铂族矿物的岩石成因

1区 地球科学 Q1 Earth and Planetary Sciences
B. O’Driscoll, J. González-Jiménez
{"title":"铂族矿物的岩石成因","authors":"B. O’Driscoll, J. González-Jiménez","doi":"10.2138/RMG.2016.81.09","DOIUrl":null,"url":null,"abstract":"The platinum-group minerals (PGM) are a diverse group of minerals that concentrate the platinum-group elements (PGE; Os, Ir, Ru, Rh, Pt, and Pd). At the time of writing, the International Mineralogical Association database includes 135 named discrete PGM phases. Much of our knowledge of the variety and the distribution of these minerals in natural systems comes from ore deposits associated with mafic and ultramafic rocks and their derivatives (see also Barnes and Ripley 2016, this volume). Concentrations of PGM can be found in layered mafic–ultramafic intrusions. Although they don’t typically achieve ore grade status, supra-subduction zone upper mantle (preserved in ophiolite) lithologies (i.e., chromitite [> 60 vol.% Cr-spinel], pyroxenite) characteristically host a diversity of PGM assemblages as well (Becker and Dale 2016, this volume). Occurrences of the PGM in layered intrusions, ophiolites, and several other important settings will all be described in this review. In keeping with the general theme of this volume, the focus of this chapter is on relatively high-temperature (magmatic) settings. This is not a straightforward distinction to make, as PGM assemblages that begin as high-temperature parageneses may be modified at much lower temperatures during metamorphism, hydrothermal processes or surficial weathering (e.g., Hanley 2005). However, the vast majority of the published literature on PGM petrogenesis is based on occurrences from magmatic environments, an understandable bias given the importance of the major ore deposits that occur in some layered mafic–ultramafic intrusions, for example. For that reason, the emphasis of this review will be on high-temperature magmatic settings, with the understanding that lower temperature (sub-solidus; < 600 °C) processes can modify primary PGM assemblages. The geochemical behavior of the platinum-group elements (PGE) in magmatic settings is highly chalcophile and not, as might be expected, highly siderophile. This is because most terrestrial magmatic systems are relatively oxidized, such …","PeriodicalId":49624,"journal":{"name":"Reviews in Mineralogy & Geochemistry","volume":"67 1","pages":"489-578"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"138","resultStr":"{\"title\":\"Petrogenesis of the Platinum-Group Minerals\",\"authors\":\"B. O’Driscoll, J. González-Jiménez\",\"doi\":\"10.2138/RMG.2016.81.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The platinum-group minerals (PGM) are a diverse group of minerals that concentrate the platinum-group elements (PGE; Os, Ir, Ru, Rh, Pt, and Pd). At the time of writing, the International Mineralogical Association database includes 135 named discrete PGM phases. Much of our knowledge of the variety and the distribution of these minerals in natural systems comes from ore deposits associated with mafic and ultramafic rocks and their derivatives (see also Barnes and Ripley 2016, this volume). Concentrations of PGM can be found in layered mafic–ultramafic intrusions. Although they don’t typically achieve ore grade status, supra-subduction zone upper mantle (preserved in ophiolite) lithologies (i.e., chromitite [> 60 vol.% Cr-spinel], pyroxenite) characteristically host a diversity of PGM assemblages as well (Becker and Dale 2016, this volume). Occurrences of the PGM in layered intrusions, ophiolites, and several other important settings will all be described in this review. In keeping with the general theme of this volume, the focus of this chapter is on relatively high-temperature (magmatic) settings. This is not a straightforward distinction to make, as PGM assemblages that begin as high-temperature parageneses may be modified at much lower temperatures during metamorphism, hydrothermal processes or surficial weathering (e.g., Hanley 2005). However, the vast majority of the published literature on PGM petrogenesis is based on occurrences from magmatic environments, an understandable bias given the importance of the major ore deposits that occur in some layered mafic–ultramafic intrusions, for example. For that reason, the emphasis of this review will be on high-temperature magmatic settings, with the understanding that lower temperature (sub-solidus; < 600 °C) processes can modify primary PGM assemblages. The geochemical behavior of the platinum-group elements (PGE) in magmatic settings is highly chalcophile and not, as might be expected, highly siderophile. This is because most terrestrial magmatic systems are relatively oxidized, such …\",\"PeriodicalId\":49624,\"journal\":{\"name\":\"Reviews in Mineralogy & Geochemistry\",\"volume\":\"67 1\",\"pages\":\"489-578\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"138\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Mineralogy & Geochemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2138/RMG.2016.81.09\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Mineralogy & Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2138/RMG.2016.81.09","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 138

摘要

铂族矿物(PGM)是一种富集铂族元素(PGE;Os, Ir, Ru, Rh, Pt和Pd)在撰写本文时,国际矿物学协会的数据库包括135个已命名的离散PGM相。我们对这些矿物在自然系统中的种类和分布的大部分知识来自与基性和超基性岩石及其衍生物相关的矿床(另见Barnes和Ripley 2016,本卷)。在层状基性-超基性侵入体中可以发现PGM的浓度。虽然它们通常没有达到矿石品位,但俯冲带上地幔(保存在蛇绿岩中)岩性(即铬铁矿[> 60 vol.% cr -尖晶石],辉石岩)也具有多种PGM组合的特征(Becker and Dale 2016,本卷)。本文将介绍层状侵入体、蛇绿岩和其他重要环境中PGM的赋有情况。为了与本卷的总体主题保持一致,本章的重点是相对高温(岩浆)环境。这并不是一个简单的区分,因为在变质作用、热液作用或表面风化过程中,以高温共生的形式开始的PGM组合可能在更低的温度下被修饰(例如,Hanley 2005)。然而,绝大多数已发表的关于PGM岩石成因的文献都是基于岩浆环境的产状,考虑到主要矿床的重要性,例如在一些层状基性-超基性侵入体中,这种偏见是可以理解的。因此,本综述的重点将放在高温岩浆环境上,并了解较低温度(亚固相);< 600°C)工艺可以修改初级PGM组合。岩浆环境中铂族元素(PGE)的地球化学行为是高度亲铜的,而不是像预期的那样是高度亲铁的。这是因为大多数陆地岩浆系统是相对氧化的,比如……
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Petrogenesis of the Platinum-Group Minerals
The platinum-group minerals (PGM) are a diverse group of minerals that concentrate the platinum-group elements (PGE; Os, Ir, Ru, Rh, Pt, and Pd). At the time of writing, the International Mineralogical Association database includes 135 named discrete PGM phases. Much of our knowledge of the variety and the distribution of these minerals in natural systems comes from ore deposits associated with mafic and ultramafic rocks and their derivatives (see also Barnes and Ripley 2016, this volume). Concentrations of PGM can be found in layered mafic–ultramafic intrusions. Although they don’t typically achieve ore grade status, supra-subduction zone upper mantle (preserved in ophiolite) lithologies (i.e., chromitite [> 60 vol.% Cr-spinel], pyroxenite) characteristically host a diversity of PGM assemblages as well (Becker and Dale 2016, this volume). Occurrences of the PGM in layered intrusions, ophiolites, and several other important settings will all be described in this review. In keeping with the general theme of this volume, the focus of this chapter is on relatively high-temperature (magmatic) settings. This is not a straightforward distinction to make, as PGM assemblages that begin as high-temperature parageneses may be modified at much lower temperatures during metamorphism, hydrothermal processes or surficial weathering (e.g., Hanley 2005). However, the vast majority of the published literature on PGM petrogenesis is based on occurrences from magmatic environments, an understandable bias given the importance of the major ore deposits that occur in some layered mafic–ultramafic intrusions, for example. For that reason, the emphasis of this review will be on high-temperature magmatic settings, with the understanding that lower temperature (sub-solidus; < 600 °C) processes can modify primary PGM assemblages. The geochemical behavior of the platinum-group elements (PGE) in magmatic settings is highly chalcophile and not, as might be expected, highly siderophile. This is because most terrestrial magmatic systems are relatively oxidized, such …
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reviews in Mineralogy & Geochemistry
Reviews in Mineralogy & Geochemistry 地学-地球化学与地球物理
CiteScore
8.30
自引率
0.00%
发文量
39
期刊介绍: RiMG is a series of multi-authored, soft-bound volumes containing concise reviews of the literature and advances in theoretical and/or applied mineralogy, crystallography, petrology, and geochemistry. The content of each volume consists of fully developed text which can be used for self-study, research, or as a text-book for graduate-level courses. RiMG volumes are typically produced in conjunction with a short course but can also be published without a short course. The series is jointly published by the Mineralogical Society of America (MSA) and the Geochemical Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信