莫兹波浪器

G. Gestrin, B. Yefimov
{"title":"莫兹波浪器","authors":"G. Gestrin, B. Yefimov","doi":"10.1109/ICIMW.2002.1076185","DOIUrl":null,"url":null,"abstract":"The electron motion in undulator magnetic fields formed by parallel straight magnets, with alternating polarity, is studied in this work. In a mathematical model the magnets are simulated as dipoles. It is shown that the dipole field is chaotic, with multiple precision, and that it induces a frequent alteration of electron motion direction and also the appearance of braking radiation. The well-known Ginsburg formulas were used (V.L. Ginzburg, Theoretical Physics and Astrophysics, Moscow, Publishing House Nauka, p. 530, 1975).","PeriodicalId":23431,"journal":{"name":"Twenty Seventh International Conference on Infrared and Millimeter Waves","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Motz undulator\",\"authors\":\"G. Gestrin, B. Yefimov\",\"doi\":\"10.1109/ICIMW.2002.1076185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electron motion in undulator magnetic fields formed by parallel straight magnets, with alternating polarity, is studied in this work. In a mathematical model the magnets are simulated as dipoles. It is shown that the dipole field is chaotic, with multiple precision, and that it induces a frequent alteration of electron motion direction and also the appearance of braking radiation. The well-known Ginsburg formulas were used (V.L. Ginzburg, Theoretical Physics and Astrophysics, Moscow, Publishing House Nauka, p. 530, 1975).\",\"PeriodicalId\":23431,\"journal\":{\"name\":\"Twenty Seventh International Conference on Infrared and Millimeter Waves\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Twenty Seventh International Conference on Infrared and Millimeter Waves\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIMW.2002.1076185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Twenty Seventh International Conference on Infrared and Millimeter Waves","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMW.2002.1076185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了由极性交变的平行直磁体形成的波动磁场中电子的运动。在数学模型中,磁体被模拟成偶极子。结果表明,偶极子场是混沌的,具有多重精度,并引起电子运动方向的频繁改变和制动辐射的出现。使用了著名的金斯堡公式(V.L. Ginzburg,理论物理学和天体物理学,莫斯科,Nauka出版社,第530页,1975年)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Motz undulator
The electron motion in undulator magnetic fields formed by parallel straight magnets, with alternating polarity, is studied in this work. In a mathematical model the magnets are simulated as dipoles. It is shown that the dipole field is chaotic, with multiple precision, and that it induces a frequent alteration of electron motion direction and also the appearance of braking radiation. The well-known Ginsburg formulas were used (V.L. Ginzburg, Theoretical Physics and Astrophysics, Moscow, Publishing House Nauka, p. 530, 1975).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信