Guihong Wan, Meng Jiao, Xinglong Ju, Yu Zhang, H. Schweitzer, Feng Liu
{"title":"基于可证明最优性组合搜索的脑电生理源成像","authors":"Guihong Wan, Meng Jiao, Xinglong Ju, Yu Zhang, H. Schweitzer, Feng Liu","doi":"10.1609/aaai.v37i10.26471","DOIUrl":null,"url":null,"abstract":"Electrophysiological Source Imaging (ESI) refers to reconstructing the underlying brain source activation from non-invasive Electroencephalography (EEG) and Magnetoencephalography (MEG) measurements on the scalp. Estimating the source locations and their extents is a fundamental tool in clinical and neuroscience applications. However, the estimation is challenging because of the ill-posedness and high coherence in the leadfield matrix as well as the noise in the EEG/MEG data. In this work, we proposed a combinatorial search framework to address the ESI problem with a provable optimality guarantee. Specifically, by exploiting the graph neighborhood information in the brain source space, we converted the ESI problem into a graph search problem and designed a combinatorial search algorithm under the framework of A* to solve it. The proposed algorithm is guaranteed to give an optimal solution to the ESI problem. Experimental results on both synthetic data and real epilepsy EEG data demonstrated that the proposed algorithm could faithfully reconstruct the source activation in the brain.","PeriodicalId":74506,"journal":{"name":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","volume":"62 1","pages":"12491-12499"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrophysiological Brain Source Imaging via Combinatorial Search with Provable Optimality\",\"authors\":\"Guihong Wan, Meng Jiao, Xinglong Ju, Yu Zhang, H. Schweitzer, Feng Liu\",\"doi\":\"10.1609/aaai.v37i10.26471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrophysiological Source Imaging (ESI) refers to reconstructing the underlying brain source activation from non-invasive Electroencephalography (EEG) and Magnetoencephalography (MEG) measurements on the scalp. Estimating the source locations and their extents is a fundamental tool in clinical and neuroscience applications. However, the estimation is challenging because of the ill-posedness and high coherence in the leadfield matrix as well as the noise in the EEG/MEG data. In this work, we proposed a combinatorial search framework to address the ESI problem with a provable optimality guarantee. Specifically, by exploiting the graph neighborhood information in the brain source space, we converted the ESI problem into a graph search problem and designed a combinatorial search algorithm under the framework of A* to solve it. The proposed algorithm is guaranteed to give an optimal solution to the ESI problem. Experimental results on both synthetic data and real epilepsy EEG data demonstrated that the proposed algorithm could faithfully reconstruct the source activation in the brain.\",\"PeriodicalId\":74506,\"journal\":{\"name\":\"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence\",\"volume\":\"62 1\",\"pages\":\"12491-12499\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aaai.v37i10.26471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaai.v37i10.26471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electrophysiological Brain Source Imaging via Combinatorial Search with Provable Optimality
Electrophysiological Source Imaging (ESI) refers to reconstructing the underlying brain source activation from non-invasive Electroencephalography (EEG) and Magnetoencephalography (MEG) measurements on the scalp. Estimating the source locations and their extents is a fundamental tool in clinical and neuroscience applications. However, the estimation is challenging because of the ill-posedness and high coherence in the leadfield matrix as well as the noise in the EEG/MEG data. In this work, we proposed a combinatorial search framework to address the ESI problem with a provable optimality guarantee. Specifically, by exploiting the graph neighborhood information in the brain source space, we converted the ESI problem into a graph search problem and designed a combinatorial search algorithm under the framework of A* to solve it. The proposed algorithm is guaranteed to give an optimal solution to the ESI problem. Experimental results on both synthetic data and real epilepsy EEG data demonstrated that the proposed algorithm could faithfully reconstruct the source activation in the brain.