Derick M. P. Kucharski, V. Pinto, L. Rocha, E. D. dos Santos, C. Fragassa, L. Isoldi
{"title":"横向加劲i型或t型加劲板受弯结构的几何分析","authors":"Derick M. P. Kucharski, V. Pinto, L. Rocha, E. D. dos Santos, C. Fragassa, L. Isoldi","doi":"10.22190/fume211016070k","DOIUrl":null,"url":null,"abstract":"Several stiffened plates arrangements subjected to bending were configured applying the Constructal Design Method (CDM) and solved by Finite Element Method (FEM), aiming through the Exhaustive Search (ES) technique analyze the influence of transverse I-Shaped or T-Shaped stiffeners in mechanical behavior. Considering a non-stiffened plate as reference and maintaining the total steel volume constant, a portion of the reference plate was deducted from its thickness, and transformed into stiffeners through the ???? volume fraction parameter, which represents the ratio between the steel volume of the stiffeners and the steel volume of the reference plate. Assuming ???? = 0.3, 25 plates with just I-Shaped stiffeners in longitudinal and transverse directions and 25 plates with I-Shaped stiffeners in longitudinal direction and T-Shaped stiffeners in transverse direction were proposed. The results showed that the plates with transverse T-Shaped stiffeners are more effective, reducing the maximum von Mises stress and maximum deflection, respectively, in up to more than 60% and 50% when compared with the plates with just I-Shaped stiffeners.","PeriodicalId":51338,"journal":{"name":"Facta Universitatis-Series Mechanical Engineering","volume":"88 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"GEOMETRIC ANALYSIS BY CONSTRUCTAL DESIGN OF STIFFENED STEEL PLATES UNDER BENDING WITH TRANSVERSE I-SHAPED OR T-SHAPED STIFFENERS\",\"authors\":\"Derick M. P. Kucharski, V. Pinto, L. Rocha, E. D. dos Santos, C. Fragassa, L. Isoldi\",\"doi\":\"10.22190/fume211016070k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several stiffened plates arrangements subjected to bending were configured applying the Constructal Design Method (CDM) and solved by Finite Element Method (FEM), aiming through the Exhaustive Search (ES) technique analyze the influence of transverse I-Shaped or T-Shaped stiffeners in mechanical behavior. Considering a non-stiffened plate as reference and maintaining the total steel volume constant, a portion of the reference plate was deducted from its thickness, and transformed into stiffeners through the ???? volume fraction parameter, which represents the ratio between the steel volume of the stiffeners and the steel volume of the reference plate. Assuming ???? = 0.3, 25 plates with just I-Shaped stiffeners in longitudinal and transverse directions and 25 plates with I-Shaped stiffeners in longitudinal direction and T-Shaped stiffeners in transverse direction were proposed. The results showed that the plates with transverse T-Shaped stiffeners are more effective, reducing the maximum von Mises stress and maximum deflection, respectively, in up to more than 60% and 50% when compared with the plates with just I-Shaped stiffeners.\",\"PeriodicalId\":51338,\"journal\":{\"name\":\"Facta Universitatis-Series Mechanical Engineering\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2022-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Facta Universitatis-Series Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.22190/fume211016070k\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.22190/fume211016070k","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
GEOMETRIC ANALYSIS BY CONSTRUCTAL DESIGN OF STIFFENED STEEL PLATES UNDER BENDING WITH TRANSVERSE I-SHAPED OR T-SHAPED STIFFENERS
Several stiffened plates arrangements subjected to bending were configured applying the Constructal Design Method (CDM) and solved by Finite Element Method (FEM), aiming through the Exhaustive Search (ES) technique analyze the influence of transverse I-Shaped or T-Shaped stiffeners in mechanical behavior. Considering a non-stiffened plate as reference and maintaining the total steel volume constant, a portion of the reference plate was deducted from its thickness, and transformed into stiffeners through the ???? volume fraction parameter, which represents the ratio between the steel volume of the stiffeners and the steel volume of the reference plate. Assuming ???? = 0.3, 25 plates with just I-Shaped stiffeners in longitudinal and transverse directions and 25 plates with I-Shaped stiffeners in longitudinal direction and T-Shaped stiffeners in transverse direction were proposed. The results showed that the plates with transverse T-Shaped stiffeners are more effective, reducing the maximum von Mises stress and maximum deflection, respectively, in up to more than 60% and 50% when compared with the plates with just I-Shaped stiffeners.
期刊介绍:
Facta Universitatis, Series: Mechanical Engineering (FU Mech Eng) is an open-access, peer-reviewed international journal published by the University of Niš in the Republic of Serbia. It publishes high-quality, refereed papers three times a year, encompassing original theoretical and/or practice-oriented research as well as extended versions of previously published conference papers. The journal's scope covers the entire spectrum of Mechanical Engineering. Papers undergo rigorous peer review to ensure originality, relevance, and readability, maintaining high publication standards while offering a timely, comprehensive, and balanced review process.