横向松弛分布反演算法中的不确定性研究

Shanxue Chen, Ran Li, Jie Yu, Hong-zhi Wang, Xue-long Zhang
{"title":"横向松弛分布反演算法中的不确定性研究","authors":"Shanxue Chen, Ran Li, Jie Yu, Hong-zhi Wang, Xue-long Zhang","doi":"10.1109/ICBBE.2010.5514753","DOIUrl":null,"url":null,"abstract":"Nuclear magnetic resonance (NMR) relaxation spectrum is often used as fingerprints of molecular species, structure and dynamics in the study of complex multiphase system. Inversion algorithms such as singular value decomposition (SVD), Non-negative least square (NNLS), Solid iteration rebuild technique (SIRT) have been widely used in analyzing NMR data to obtain a T1 or T2 spectrum. However, due to the ill-conditioned nature of such inversion, it is difficult to determine the reliability of the inversion result. The concrete model is realized in MATLAB according the thought of the above three algorithms in this article. We converged to the true distribution by matching up the inversion spectrum from a series of true decay data collected from the NMR analyst instrument and a noisy simulated model, then evaluated the effects of noise in the original NMR data.","PeriodicalId":6396,"journal":{"name":"2010 4th International Conference on Bioinformatics and Biomedical Engineering","volume":"9 4 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Study of Uncertainties in the Inversion Algorithms for Transverse Relaxation Distribution\",\"authors\":\"Shanxue Chen, Ran Li, Jie Yu, Hong-zhi Wang, Xue-long Zhang\",\"doi\":\"10.1109/ICBBE.2010.5514753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nuclear magnetic resonance (NMR) relaxation spectrum is often used as fingerprints of molecular species, structure and dynamics in the study of complex multiphase system. Inversion algorithms such as singular value decomposition (SVD), Non-negative least square (NNLS), Solid iteration rebuild technique (SIRT) have been widely used in analyzing NMR data to obtain a T1 or T2 spectrum. However, due to the ill-conditioned nature of such inversion, it is difficult to determine the reliability of the inversion result. The concrete model is realized in MATLAB according the thought of the above three algorithms in this article. We converged to the true distribution by matching up the inversion spectrum from a series of true decay data collected from the NMR analyst instrument and a noisy simulated model, then evaluated the effects of noise in the original NMR data.\",\"PeriodicalId\":6396,\"journal\":{\"name\":\"2010 4th International Conference on Bioinformatics and Biomedical Engineering\",\"volume\":\"9 4 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 4th International Conference on Bioinformatics and Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBBE.2010.5514753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 4th International Conference on Bioinformatics and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBBE.2010.5514753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在复杂多相体系的研究中,核磁共振弛豫谱常被用作分子种类、结构和动力学的指纹。奇异值分解(SVD)、非负最小二乘(NNLS)、实体迭代重建技术(SIRT)等反演算法已广泛应用于核磁共振数据分析以获得T1或T2谱。然而,由于这种反演的病态性质,很难确定反演结果的可靠性。本文根据以上三种算法的思想,在MATLAB中实现了具体的模型。通过将核磁共振分析仪采集的一系列真实衰减数据的反演谱与噪声模拟模型进行匹配,收敛到真实分布,并对原始核磁共振数据中噪声的影响进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of Uncertainties in the Inversion Algorithms for Transverse Relaxation Distribution
Nuclear magnetic resonance (NMR) relaxation spectrum is often used as fingerprints of molecular species, structure and dynamics in the study of complex multiphase system. Inversion algorithms such as singular value decomposition (SVD), Non-negative least square (NNLS), Solid iteration rebuild technique (SIRT) have been widely used in analyzing NMR data to obtain a T1 or T2 spectrum. However, due to the ill-conditioned nature of such inversion, it is difficult to determine the reliability of the inversion result. The concrete model is realized in MATLAB according the thought of the above three algorithms in this article. We converged to the true distribution by matching up the inversion spectrum from a series of true decay data collected from the NMR analyst instrument and a noisy simulated model, then evaluated the effects of noise in the original NMR data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信