一种基于分裂层次k均值的图像分割算法

Martin H. Jose Antonio, J. Montero, J. Yáñez, D. Gómez
{"title":"一种基于分裂层次k均值的图像分割算法","authors":"Martin H. Jose Antonio, J. Montero, J. Yáñez, D. Gómez","doi":"10.1109/ISKE.2010.5680865","DOIUrl":null,"url":null,"abstract":"In this paper we present a divisive hierarchical method for the analysis and segmentation of visual images. The proposed method is based on the use of the k-means method embedded in a recursive algorithm to obtain a clustering at each node of the hierarchy. The recursive algorithm determines automatically at each node a good estimate of the parameter k (the number of clusters in the k-means algorithm) based on relevant statistics. We have made several experiments with different kinds of images obtaining encouraging results showing that the method can be used effectively not only for automatic image segmentation but also for image analysis and, even more, data mining.","PeriodicalId":6417,"journal":{"name":"2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering","volume":"63 1","pages":"300-304"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A divisive hierarchical k-means based algorithm for image segmentation\",\"authors\":\"Martin H. Jose Antonio, J. Montero, J. Yáñez, D. Gómez\",\"doi\":\"10.1109/ISKE.2010.5680865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a divisive hierarchical method for the analysis and segmentation of visual images. The proposed method is based on the use of the k-means method embedded in a recursive algorithm to obtain a clustering at each node of the hierarchy. The recursive algorithm determines automatically at each node a good estimate of the parameter k (the number of clusters in the k-means algorithm) based on relevant statistics. We have made several experiments with different kinds of images obtaining encouraging results showing that the method can be used effectively not only for automatic image segmentation but also for image analysis and, even more, data mining.\",\"PeriodicalId\":6417,\"journal\":{\"name\":\"2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering\",\"volume\":\"63 1\",\"pages\":\"300-304\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISKE.2010.5680865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISKE.2010.5680865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在本文中,我们提出了一种用于视觉图像分析和分割的分裂分层方法。所提出的方法是基于使用嵌入在递归算法中的k-means方法在层次结构的每个节点上获得聚类。递归算法在每个节点上根据相关统计数据自动确定参数k (k-means算法中的簇数)的良好估计。我们对不同类型的图像进行了多次实验,得到了令人鼓舞的结果,表明该方法不仅可以有效地用于图像自动分割,还可以用于图像分析,甚至数据挖掘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A divisive hierarchical k-means based algorithm for image segmentation
In this paper we present a divisive hierarchical method for the analysis and segmentation of visual images. The proposed method is based on the use of the k-means method embedded in a recursive algorithm to obtain a clustering at each node of the hierarchy. The recursive algorithm determines automatically at each node a good estimate of the parameter k (the number of clusters in the k-means algorithm) based on relevant statistics. We have made several experiments with different kinds of images obtaining encouraging results showing that the method can be used effectively not only for automatic image segmentation but also for image analysis and, even more, data mining.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信