{"title":"一种基于机器学习的条带自动包装算法选择方法","authors":"Rosephine G. Rakotonirainy","doi":"10.5784/36-2-686","DOIUrl":null,"url":null,"abstract":"This paper deals with strip packing metaheuristic algorithm selection using data mining techniques. Given a set of solved strip packing problem instances, the relationship between the instance characteristics and algorithm performance is learned and is used to predict the best algorithms to solve a new set of unseen problem instances. A framework capable of modelling this relationship for an automated packing algorithm selection is proposed. The effectiveness of the proposed framework is evaluated in the context of a large set of strip packing problem instances and the state-of-the-art strip packing algorithms. The results suggest a 91% accuracy in correctly identifying the best algorithm for a given instance.","PeriodicalId":30587,"journal":{"name":"ORiON","volume":"27 1","pages":"73-88"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A machine learning approach for automated strip packing algorithm selection\",\"authors\":\"Rosephine G. Rakotonirainy\",\"doi\":\"10.5784/36-2-686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with strip packing metaheuristic algorithm selection using data mining techniques. Given a set of solved strip packing problem instances, the relationship between the instance characteristics and algorithm performance is learned and is used to predict the best algorithms to solve a new set of unseen problem instances. A framework capable of modelling this relationship for an automated packing algorithm selection is proposed. The effectiveness of the proposed framework is evaluated in the context of a large set of strip packing problem instances and the state-of-the-art strip packing algorithms. The results suggest a 91% accuracy in correctly identifying the best algorithm for a given instance.\",\"PeriodicalId\":30587,\"journal\":{\"name\":\"ORiON\",\"volume\":\"27 1\",\"pages\":\"73-88\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ORiON\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5784/36-2-686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ORiON","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5784/36-2-686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A machine learning approach for automated strip packing algorithm selection
This paper deals with strip packing metaheuristic algorithm selection using data mining techniques. Given a set of solved strip packing problem instances, the relationship between the instance characteristics and algorithm performance is learned and is used to predict the best algorithms to solve a new set of unseen problem instances. A framework capable of modelling this relationship for an automated packing algorithm selection is proposed. The effectiveness of the proposed framework is evaluated in the context of a large set of strip packing problem instances and the state-of-the-art strip packing algorithms. The results suggest a 91% accuracy in correctly identifying the best algorithm for a given instance.