Jorge Zazueta Gutierrez, Andrea Chávez-Heredia, J. Zazueta‐Hernández
{"title":"基于支持向量机的破产内生预测","authors":"Jorge Zazueta Gutierrez, Andrea Chávez-Heredia, J. Zazueta‐Hernández","doi":"10.31235/osf.io/ehpt7","DOIUrl":null,"url":null,"abstract":"We build a global bankruptcy prediction model using a support vector machine trained only on firms' endogenous information in the form of financial ratios. The model is tested not only on entirely random unseen data but on samples taken from specific global regions and industries to test for prediction bias, achieving satisfactory prediction performance in all cases. While support vector machines are not easily interpretable, we explore variable importance and find it consistent with economic intuition.","PeriodicalId":42388,"journal":{"name":"International Journal of Combinatorial Optimization Problems and Informatics","volume":"28 1","pages":"88-97"},"PeriodicalIF":0.3000,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Endogenous Prediction of Bankruptcy using a Support Vector Machine\",\"authors\":\"Jorge Zazueta Gutierrez, Andrea Chávez-Heredia, J. Zazueta‐Hernández\",\"doi\":\"10.31235/osf.io/ehpt7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We build a global bankruptcy prediction model using a support vector machine trained only on firms' endogenous information in the form of financial ratios. The model is tested not only on entirely random unseen data but on samples taken from specific global regions and industries to test for prediction bias, achieving satisfactory prediction performance in all cases. While support vector machines are not easily interpretable, we explore variable importance and find it consistent with economic intuition.\",\"PeriodicalId\":42388,\"journal\":{\"name\":\"International Journal of Combinatorial Optimization Problems and Informatics\",\"volume\":\"28 1\",\"pages\":\"88-97\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Combinatorial Optimization Problems and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31235/osf.io/ehpt7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Combinatorial Optimization Problems and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31235/osf.io/ehpt7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Endogenous Prediction of Bankruptcy using a Support Vector Machine
We build a global bankruptcy prediction model using a support vector machine trained only on firms' endogenous information in the form of financial ratios. The model is tested not only on entirely random unseen data but on samples taken from specific global regions and industries to test for prediction bias, achieving satisfactory prediction performance in all cases. While support vector machines are not easily interpretable, we explore variable importance and find it consistent with economic intuition.