在云中处理异构工作流,同时增强优化和性能

Q1 Computer Science
Emile Cadorel, Hélène Coullon, Jean-Marc Menaud
{"title":"在云中处理异构工作流,同时增强优化和性能","authors":"Emile Cadorel, Hélène Coullon, Jean-Marc Menaud","doi":"10.1109/CLOUD55607.2022.00021","DOIUrl":null,"url":null,"abstract":"The goal of a workflow engine is to facilitate the writing, the deploying, and the execution of a scientific workflow (i.e., graph of coarse-grain and heterogeneous tasks) on distributed infrastructures. With the democratization of the Cloud paradigm, many workflow engines of the state of the art offer a way to execute workflows on distant data centers by using the Infrastructure-as-a-Service (IaaS) or the Function-as-a-Service (FaaS) services of Cloud providers. Hence, workflow engines can take advantage of the (presumably) infinite resources and the economical model of the Cloud. However, two important limitations lie in this vision of Cloud-oriented workflow engines. First, by using existing services of Cloud providers, and by managing the workflows at the user side, the Cloud providers are unaware of both the workflows and their user needs, and cannot apply specific resource optimizations to their infrastructure. Second, for the same reasons, handling the heterogeneity of tasks (different operating systems) in workflows necessarily degrades either the transparency for the users (who must provision different types of resources), or the completion time performance of the workflows, because of the stacking of virtualization layers. In this paper, we tackle these two limitations by presenting a new Cloud service dedicated to scientific workflows. Unlike existing workflow engines, this service is deployed and managed by the Cloud providers, and enables specific resource optimizations and offers a better control of the heterogeneity of the workflows. We evaluate our new service in comparison to Argo, a well-known workflow engine of the literature based on FaaS services. This evaluation was made on a real distributed experimental platform with a realistic and complex scenario.","PeriodicalId":54281,"journal":{"name":"IEEE Cloud Computing","volume":"81 1","pages":"49-58"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Handling heterogeneous workflows in the Cloud while enhancing optimizations and performance\",\"authors\":\"Emile Cadorel, Hélène Coullon, Jean-Marc Menaud\",\"doi\":\"10.1109/CLOUD55607.2022.00021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of a workflow engine is to facilitate the writing, the deploying, and the execution of a scientific workflow (i.e., graph of coarse-grain and heterogeneous tasks) on distributed infrastructures. With the democratization of the Cloud paradigm, many workflow engines of the state of the art offer a way to execute workflows on distant data centers by using the Infrastructure-as-a-Service (IaaS) or the Function-as-a-Service (FaaS) services of Cloud providers. Hence, workflow engines can take advantage of the (presumably) infinite resources and the economical model of the Cloud. However, two important limitations lie in this vision of Cloud-oriented workflow engines. First, by using existing services of Cloud providers, and by managing the workflows at the user side, the Cloud providers are unaware of both the workflows and their user needs, and cannot apply specific resource optimizations to their infrastructure. Second, for the same reasons, handling the heterogeneity of tasks (different operating systems) in workflows necessarily degrades either the transparency for the users (who must provision different types of resources), or the completion time performance of the workflows, because of the stacking of virtualization layers. In this paper, we tackle these two limitations by presenting a new Cloud service dedicated to scientific workflows. Unlike existing workflow engines, this service is deployed and managed by the Cloud providers, and enables specific resource optimizations and offers a better control of the heterogeneity of the workflows. We evaluate our new service in comparison to Argo, a well-known workflow engine of the literature based on FaaS services. This evaluation was made on a real distributed experimental platform with a realistic and complex scenario.\",\"PeriodicalId\":54281,\"journal\":{\"name\":\"IEEE Cloud Computing\",\"volume\":\"81 1\",\"pages\":\"49-58\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLOUD55607.2022.00021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD55607.2022.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

工作流引擎的目标是促进分布式基础设施上科学工作流(即粗粒度和异构任务图)的编写、部署和执行。随着云范式的民主化,许多最新的工作流引擎通过使用云提供商的基础设施即服务(IaaS)或功能即服务(FaaS)服务,提供了一种在远程数据中心上执行工作流的方法。因此,工作流引擎可以利用(大概)无限的资源和云的经济模型。然而,这种面向云的工作流引擎存在两个重要的限制。首先,通过使用云提供商的现有服务,以及在用户端管理工作流,云提供商不知道工作流和他们的用户需求,并且不能对他们的基础设施应用特定的资源优化。其次,出于同样的原因,处理工作流中任务的异构性(不同的操作系统)必然会降低用户的透明度(他们必须提供不同类型的资源),或者工作流的完成时间性能,因为虚拟化层的堆叠。在本文中,我们通过提出一种专门用于科学工作流的新的云服务来解决这两个限制。与现有的工作流引擎不同,该服务由云提供商部署和管理,支持特定的资源优化,并提供对工作流异构性的更好控制。我们将我们的新服务与Argo(一个基于FaaS服务的知名工作流引擎)进行了比较。该评估是在一个真实的分布式实验平台上进行的,具有真实而复杂的场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Handling heterogeneous workflows in the Cloud while enhancing optimizations and performance
The goal of a workflow engine is to facilitate the writing, the deploying, and the execution of a scientific workflow (i.e., graph of coarse-grain and heterogeneous tasks) on distributed infrastructures. With the democratization of the Cloud paradigm, many workflow engines of the state of the art offer a way to execute workflows on distant data centers by using the Infrastructure-as-a-Service (IaaS) or the Function-as-a-Service (FaaS) services of Cloud providers. Hence, workflow engines can take advantage of the (presumably) infinite resources and the economical model of the Cloud. However, two important limitations lie in this vision of Cloud-oriented workflow engines. First, by using existing services of Cloud providers, and by managing the workflows at the user side, the Cloud providers are unaware of both the workflows and their user needs, and cannot apply specific resource optimizations to their infrastructure. Second, for the same reasons, handling the heterogeneity of tasks (different operating systems) in workflows necessarily degrades either the transparency for the users (who must provision different types of resources), or the completion time performance of the workflows, because of the stacking of virtualization layers. In this paper, we tackle these two limitations by presenting a new Cloud service dedicated to scientific workflows. Unlike existing workflow engines, this service is deployed and managed by the Cloud providers, and enables specific resource optimizations and offers a better control of the heterogeneity of the workflows. We evaluate our new service in comparison to Argo, a well-known workflow engine of the literature based on FaaS services. This evaluation was made on a real distributed experimental platform with a realistic and complex scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Cloud Computing
IEEE Cloud Computing Computer Science-Computer Networks and Communications
CiteScore
11.20
自引率
0.00%
发文量
0
期刊介绍: Cessation. IEEE Cloud Computing is committed to the timely publication of peer-reviewed articles that provide innovative research ideas, applications results, and case studies in all areas of cloud computing. Topics relating to novel theory, algorithms, performance analyses and applications of techniques are covered. More specifically: Cloud software, Cloud security, Trade-offs between privacy and utility of cloud, Cloud in the business environment, Cloud economics, Cloud governance, Migrating to the cloud, Cloud standards, Development tools, Backup and recovery, Interoperability, Applications management, Data analytics, Communications protocols, Mobile cloud, Private clouds, Liability issues for data loss on clouds, Data integration, Big data, Cloud education, Cloud skill sets, Cloud energy consumption, The architecture of cloud computing, Applications in commerce, education, and industry, Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS), Business Process as a Service (BPaaS)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信