后BaTiO3 (BT)陶瓷中氧空位对下一代mlcc影响的研究趋势

I. Seo, Ka-young Lee, Cheol-Min Oh, Hyoung-Won Kang
{"title":"后BaTiO3 (BT)陶瓷中氧空位对下一代mlcc影响的研究趋势","authors":"I. Seo, Ka-young Lee, Cheol-Min Oh, Hyoung-Won Kang","doi":"10.31613/ceramist.2023.26.2.02","DOIUrl":null,"url":null,"abstract":"In line with the trend towards electrification in mobility, there is a demand for the development of next-generation Multilayer Ceramic Capacitors(MLCCs) with superior properties compared to those using the conventional BaTiO3 (BT) ceramics. For this, various high-performing ferroelectric ceramics have been proposed as post-BT materials, and numerous studies have been conducted on the role of oxygen vacancies within these materials. It has been confirmed that oxygen vacancies in the ceramic material have a significant impact on various properties such as oxygen ionic conduction, IR degradation, microstructure, aging degradation, and hardening effect, and by controlling the concentration and mobility of oxygen vacancies, it is possible to adjust these properties. We hope that research on the role of oxygen vacancies in various high-performing ferroelectric ceramics will be utilized as a foundation of knowledge for the development of next-generation MLCCs in the future.","PeriodicalId":9738,"journal":{"name":"Ceramist","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research Trends on the Influence of Oxygen Vacancies in Post BaTiO3 (BT) Ceramics for Next-Generation MLCCs\",\"authors\":\"I. Seo, Ka-young Lee, Cheol-Min Oh, Hyoung-Won Kang\",\"doi\":\"10.31613/ceramist.2023.26.2.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In line with the trend towards electrification in mobility, there is a demand for the development of next-generation Multilayer Ceramic Capacitors(MLCCs) with superior properties compared to those using the conventional BaTiO3 (BT) ceramics. For this, various high-performing ferroelectric ceramics have been proposed as post-BT materials, and numerous studies have been conducted on the role of oxygen vacancies within these materials. It has been confirmed that oxygen vacancies in the ceramic material have a significant impact on various properties such as oxygen ionic conduction, IR degradation, microstructure, aging degradation, and hardening effect, and by controlling the concentration and mobility of oxygen vacancies, it is possible to adjust these properties. We hope that research on the role of oxygen vacancies in various high-performing ferroelectric ceramics will be utilized as a foundation of knowledge for the development of next-generation MLCCs in the future.\",\"PeriodicalId\":9738,\"journal\":{\"name\":\"Ceramist\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ceramist\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31613/ceramist.2023.26.2.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramist","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31613/ceramist.2023.26.2.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着汽车电气化的趋势,与使用传统BaTiO3 (BT)陶瓷的电容器相比,下一代多层陶瓷电容器(mlcc)具有更优越的性能。为此,人们提出了各种高性能铁电陶瓷作为后bt材料,并对这些材料中氧空位的作用进行了大量研究。研究证实,氧空位对陶瓷材料的氧离子传导、红外降解、微观结构、老化降解和硬化效果等性能有显著影响,通过控制氧空位的浓度和迁移率,可以对这些性能进行调节。我们希望对氧空位在各种高性能铁电陶瓷中的作用的研究将作为未来开发下一代mlcc的知识基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research Trends on the Influence of Oxygen Vacancies in Post BaTiO3 (BT) Ceramics for Next-Generation MLCCs
In line with the trend towards electrification in mobility, there is a demand for the development of next-generation Multilayer Ceramic Capacitors(MLCCs) with superior properties compared to those using the conventional BaTiO3 (BT) ceramics. For this, various high-performing ferroelectric ceramics have been proposed as post-BT materials, and numerous studies have been conducted on the role of oxygen vacancies within these materials. It has been confirmed that oxygen vacancies in the ceramic material have a significant impact on various properties such as oxygen ionic conduction, IR degradation, microstructure, aging degradation, and hardening effect, and by controlling the concentration and mobility of oxygen vacancies, it is possible to adjust these properties. We hope that research on the role of oxygen vacancies in various high-performing ferroelectric ceramics will be utilized as a foundation of knowledge for the development of next-generation MLCCs in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信