{"title":"Tb4+掺杂Na2ZrO3无机黄色颜料的合成及颜色评价","authors":"Ryohei Oka, Tomoyo Nouchi, Toshiyuki Masui","doi":"10.3390/colorants1030020","DOIUrl":null,"url":null,"abstract":"Tb4+-doped sodium zirconate samples, Na2Zr1−xTbxO3, were synthesized as novel environmentally friendly inorganic yellow pigments by a conventional solid-state reaction method. Their crystal structures, optical properties, and colors were characterized. A single-phase form was obtained for the samples in the x range of x ≤ 0.18, while impurity phases were detected for the sample with x = 0.20. All samples showed strong optical absorption in the blue light region, due to the charge transfer transition between O2− and Tb4+. As a result, the sample color became yellow, which is the complementary color of blue, and the color became more vivid with increasing Tb4+ content in the single-phase region. Among the samples, Na2Zr0.82Tb0.18O3 was the optimal composition, with the highest yellowness (b* = +67.2) and pure yellow hue (h° = 90.1). Although the b* value was lower than commercial yellow pigments such as BiVO4 and ZrSiO4:Pr, this sample had a purer yellow hue. Since Na2Zr0.82Tb0.18O3 is composed of non-toxic elements, it could be a new environmentally friendly inorganic yellow pigment.","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Color Evaluation of Tb4+-Doped Na2ZrO3 for Inorganic Yellow Pigments\",\"authors\":\"Ryohei Oka, Tomoyo Nouchi, Toshiyuki Masui\",\"doi\":\"10.3390/colorants1030020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tb4+-doped sodium zirconate samples, Na2Zr1−xTbxO3, were synthesized as novel environmentally friendly inorganic yellow pigments by a conventional solid-state reaction method. Their crystal structures, optical properties, and colors were characterized. A single-phase form was obtained for the samples in the x range of x ≤ 0.18, while impurity phases were detected for the sample with x = 0.20. All samples showed strong optical absorption in the blue light region, due to the charge transfer transition between O2− and Tb4+. As a result, the sample color became yellow, which is the complementary color of blue, and the color became more vivid with increasing Tb4+ content in the single-phase region. Among the samples, Na2Zr0.82Tb0.18O3 was the optimal composition, with the highest yellowness (b* = +67.2) and pure yellow hue (h° = 90.1). Although the b* value was lower than commercial yellow pigments such as BiVO4 and ZrSiO4:Pr, this sample had a purer yellow hue. Since Na2Zr0.82Tb0.18O3 is composed of non-toxic elements, it could be a new environmentally friendly inorganic yellow pigment.\",\"PeriodicalId\":10539,\"journal\":{\"name\":\"Colorants\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colorants\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/colorants1030020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colorants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/colorants1030020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis and Color Evaluation of Tb4+-Doped Na2ZrO3 for Inorganic Yellow Pigments
Tb4+-doped sodium zirconate samples, Na2Zr1−xTbxO3, were synthesized as novel environmentally friendly inorganic yellow pigments by a conventional solid-state reaction method. Their crystal structures, optical properties, and colors were characterized. A single-phase form was obtained for the samples in the x range of x ≤ 0.18, while impurity phases were detected for the sample with x = 0.20. All samples showed strong optical absorption in the blue light region, due to the charge transfer transition between O2− and Tb4+. As a result, the sample color became yellow, which is the complementary color of blue, and the color became more vivid with increasing Tb4+ content in the single-phase region. Among the samples, Na2Zr0.82Tb0.18O3 was the optimal composition, with the highest yellowness (b* = +67.2) and pure yellow hue (h° = 90.1). Although the b* value was lower than commercial yellow pigments such as BiVO4 and ZrSiO4:Pr, this sample had a purer yellow hue. Since Na2Zr0.82Tb0.18O3 is composed of non-toxic elements, it could be a new environmentally friendly inorganic yellow pigment.