空气调味红橡木和黑胶铁路枕木定殖担子菌的腐烂能力

IF 1.2 4区 农林科学 Q3 MATERIALS SCIENCE, PAPER & WOOD
Leon Rogers, Jed Cappellazzi, J. Morrell
{"title":"空气调味红橡木和黑胶铁路枕木定殖担子菌的腐烂能力","authors":"Leon Rogers, Jed Cappellazzi, J. Morrell","doi":"10.4067/s0718-221x2021000100459","DOIUrl":null,"url":null,"abstract":"Fungi cultured from air-seasoning blackgum and red oak timbers were assessed for their ability to cause wood decay using two hardwoods and one soft wood species in an AWPA E10 soil block test. Weight losses were greatest for bigleaf maple and tended to be much lower on southern pine. Almost a quarter of the 35 taxa tested caused less than 5 % weight loss, suggesting they posed a relatively low decay risk, even under ideal laboratory conditions; despite all fungi tested having the ability to depolymerize wood. Three of the four fungi causing the largest weight losses were brown-rot fungi, although brown-rot fungi represented only small proportion of the total isolates from the original hardwood timbers. These results illustrate wide array of decay capabilities of fungi colonizing air-seasoning red oak and blackgum timbers, and the potential of many isolates to negatively affect wood properties through biodeterioration","PeriodicalId":18092,"journal":{"name":"Maderas-ciencia Y Tecnologia","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decay capabilities of basidiomycetes colonizing air-seasoning red oak and blackgum railroad ties\",\"authors\":\"Leon Rogers, Jed Cappellazzi, J. Morrell\",\"doi\":\"10.4067/s0718-221x2021000100459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fungi cultured from air-seasoning blackgum and red oak timbers were assessed for their ability to cause wood decay using two hardwoods and one soft wood species in an AWPA E10 soil block test. Weight losses were greatest for bigleaf maple and tended to be much lower on southern pine. Almost a quarter of the 35 taxa tested caused less than 5 % weight loss, suggesting they posed a relatively low decay risk, even under ideal laboratory conditions; despite all fungi tested having the ability to depolymerize wood. Three of the four fungi causing the largest weight losses were brown-rot fungi, although brown-rot fungi represented only small proportion of the total isolates from the original hardwood timbers. These results illustrate wide array of decay capabilities of fungi colonizing air-seasoning red oak and blackgum timbers, and the potential of many isolates to negatively affect wood properties through biodeterioration\",\"PeriodicalId\":18092,\"journal\":{\"name\":\"Maderas-ciencia Y Tecnologia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Maderas-ciencia Y Tecnologia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.4067/s0718-221x2021000100459\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maderas-ciencia Y Tecnologia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.4067/s0718-221x2021000100459","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

摘要

在AWPA E10土壤块试验中,用两种硬木和一种软木来评估从空气发酵黑胶和红橡木中培养的真菌引起木材腐烂的能力。大叶枫的体重损失最大,而南松的体重损失往往要小得多。在测试的35个分类群中,几乎有四分之一造成的体重损失不到5%,这表明即使在理想的实验室条件下,它们的腐烂风险也相对较低;尽管所有测试的真菌都有解聚木材的能力。造成最大重量损失的四种真菌中有三种是褐腐真菌,尽管褐腐真菌只占原始硬木木材中总分离物的一小部分。这些结果说明了真菌定植在空气佐料红橡木和黑胶木材上的广泛腐烂能力,以及许多菌株通过生物降解对木材性能产生负面影响的潜力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decay capabilities of basidiomycetes colonizing air-seasoning red oak and blackgum railroad ties
Fungi cultured from air-seasoning blackgum and red oak timbers were assessed for their ability to cause wood decay using two hardwoods and one soft wood species in an AWPA E10 soil block test. Weight losses were greatest for bigleaf maple and tended to be much lower on southern pine. Almost a quarter of the 35 taxa tested caused less than 5 % weight loss, suggesting they posed a relatively low decay risk, even under ideal laboratory conditions; despite all fungi tested having the ability to depolymerize wood. Three of the four fungi causing the largest weight losses were brown-rot fungi, although brown-rot fungi represented only small proportion of the total isolates from the original hardwood timbers. These results illustrate wide array of decay capabilities of fungi colonizing air-seasoning red oak and blackgum timbers, and the potential of many isolates to negatively affect wood properties through biodeterioration
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Maderas-ciencia Y Tecnologia
Maderas-ciencia Y Tecnologia 工程技术-材料科学:纸与木材
CiteScore
2.60
自引率
13.30%
发文量
33
审稿时长
>12 weeks
期刊介绍: Maderas-Cienc Tecnol publishes inedits and original research articles in Spanish and English. The contributions for their publication should be unpublished and the journal is reserved all the rights of reproduction of the content of the same ones. All the articles are subjected to evaluation to the Publishing Committee or external consultants. At least two reviewers under double blind system. Previous acceptance of the Publishing Committee, summaries of thesis of Magíster and Doctorate are also published, technical opinions, revision of books and reports of congresses, related with the Science and the Technology of the Wood. The journal have not articles processing and submission charges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信