一类流形的浸没问题

Teiichi Kobayashi
{"title":"一类流形的浸没问题","authors":"Teiichi Kobayashi","doi":"10.32917/HMJ/1206138968","DOIUrl":null,"url":null,"abstract":"In this note, let M denote a compact connected orientable C°°-manifold (with boundary) of dimension m, and R the A -dimensional Euclidean space. We write M^R (or MΦR) to denote the existence (or the non-existence) of a C°°-immersion of M into R. The purpose of this note is to discuss the immersion problem for some manifolds M whose integral cohomology groups H\\M; Z) in positive dimensions are finite and have no 2-primary subgroups. We obtain the following immersion theorems of such manifolds M into R\\ where h is near to 3m/2.","PeriodicalId":17080,"journal":{"name":"Journal of science of the Hiroshima University Ser. A Mathematics, physics, chemistry","volume":"54 4 1","pages":"161-171"},"PeriodicalIF":0.0000,"publicationDate":"1967-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the immersion problem for certain manifolds\",\"authors\":\"Teiichi Kobayashi\",\"doi\":\"10.32917/HMJ/1206138968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note, let M denote a compact connected orientable C°°-manifold (with boundary) of dimension m, and R the A -dimensional Euclidean space. We write M^R (or MΦR) to denote the existence (or the non-existence) of a C°°-immersion of M into R. The purpose of this note is to discuss the immersion problem for some manifolds M whose integral cohomology groups H\\\\M; Z) in positive dimensions are finite and have no 2-primary subgroups. We obtain the following immersion theorems of such manifolds M into R\\\\ where h is near to 3m/2.\",\"PeriodicalId\":17080,\"journal\":{\"name\":\"Journal of science of the Hiroshima University Ser. A Mathematics, physics, chemistry\",\"volume\":\"54 4 1\",\"pages\":\"161-171\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1967-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of science of the Hiroshima University Ser. A Mathematics, physics, chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32917/HMJ/1206138968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of science of the Hiroshima University Ser. A Mathematics, physics, chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32917/HMJ/1206138968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本注记中,设M表示维数为M的紧连通可定向C°°流形(带边界),R表示a维欧氏空间。我们用M^R(或MΦR)来表示M在R中的C°°浸没的存在性(或不存在性)。本文的目的是讨论一些流形M的浸没问题,流形M的整上同调群H\M;Z)在正维上是有限的,没有2-初级子群。我们得到了这样的流形M到R\的浸入式定理,其中h接近于3m/2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the immersion problem for certain manifolds
In this note, let M denote a compact connected orientable C°°-manifold (with boundary) of dimension m, and R the A -dimensional Euclidean space. We write M^R (or MΦR) to denote the existence (or the non-existence) of a C°°-immersion of M into R. The purpose of this note is to discuss the immersion problem for some manifolds M whose integral cohomology groups H\M; Z) in positive dimensions are finite and have no 2-primary subgroups. We obtain the following immersion theorems of such manifolds M into R\ where h is near to 3m/2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信