立方结构中的切线

Pub Date : 2020-12-23 DOI:10.3336/gm.55.2.10
V. Volenec, Z. Kolar-Begović, R. Kolar-Šuper
{"title":"立方结构中的切线","authors":"V. Volenec, Z. Kolar-Begović, R. Kolar-Šuper","doi":"10.3336/gm.55.2.10","DOIUrl":null,"url":null,"abstract":"In this paper we study geometric concepts in a general cubic structure. The well-known relationships on the cubic curve motivate us to introduce new concepts into a general cubic structure. We will define the concept of the tangential of a point in a general cubic structure and we will study tangentials of higher-order. The characterization of this concept will be also given by means of the associated totally symmetric quasigroup. We will introduce the concept of associated and corresponding points in a cubic structure, and discuss the number of mutually different corresponding points. The properties of the introduced geometric concepts will be investigated in a general cubic structure.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tangentials in cubic structures\",\"authors\":\"V. Volenec, Z. Kolar-Begović, R. Kolar-Šuper\",\"doi\":\"10.3336/gm.55.2.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study geometric concepts in a general cubic structure. The well-known relationships on the cubic curve motivate us to introduce new concepts into a general cubic structure. We will define the concept of the tangential of a point in a general cubic structure and we will study tangentials of higher-order. The characterization of this concept will be also given by means of the associated totally symmetric quasigroup. We will introduce the concept of associated and corresponding points in a cubic structure, and discuss the number of mutually different corresponding points. The properties of the introduced geometric concepts will be investigated in a general cubic structure.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/gm.55.2.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.55.2.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究一般立方结构中的几何概念。众所周知的三次曲线关系促使我们在一般的三次结构中引入新的概念。我们将定义一般三次结构中点的切线的概念,我们将研究高阶切线。利用相关的完全对称拟群给出了这一概念的刻画。我们将介绍三次结构中关联点和对应点的概念,并讨论相互不同的对应点的数量。所引入的几何概念的性质将在一般的立方结构中进行研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Tangentials in cubic structures
In this paper we study geometric concepts in a general cubic structure. The well-known relationships on the cubic curve motivate us to introduce new concepts into a general cubic structure. We will define the concept of the tangential of a point in a general cubic structure and we will study tangentials of higher-order. The characterization of this concept will be also given by means of the associated totally symmetric quasigroup. We will introduce the concept of associated and corresponding points in a cubic structure, and discuss the number of mutually different corresponding points. The properties of the introduced geometric concepts will be investigated in a general cubic structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信