N. Ouzir, J. Bioucas-Dias, A. Basarab, J. Tourneret
{"title":"基于字典学习和时间正则化的超声成像鲁棒心脏运动估计","authors":"N. Ouzir, J. Bioucas-Dias, A. Basarab, J. Tourneret","doi":"10.1109/ULTSYM.2019.8925936","DOIUrl":null,"url":null,"abstract":"Estimating the cardiac motion from ultrasound (US) images is an ill-posed problem that requires regularization. In a recent study, it was shown that constraining the cardiac motion fields to be patch-wise sparse in a learnt overcomplete motion dictionary is more accurate than local parametric models (affine) or global functions (B-splines, total variation). In this work, we extend this method by incorporating temporal smoothness in a multi-frame optical-flow (OF) strategy. An efficient optimization strategy using the constrained split augmented Lagrangian shrinkage algorithm (C-SALSA) is proposed. The performance is evaluated on a realistic simulated cardiac dataset with available ground-truth. A comparison with the pairwise approach shows the interest of the proposed temporal regularization and multi-frame strategy in terms of accuracy and computational time.","PeriodicalId":6759,"journal":{"name":"2019 IEEE International Ultrasonics Symposium (IUS)","volume":"13 1-2 1","pages":"2326-2329"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust Cardiac Motion Estimation With Dictionary Learning and Temporal Regularization for Ultrasound Imaging\",\"authors\":\"N. Ouzir, J. Bioucas-Dias, A. Basarab, J. Tourneret\",\"doi\":\"10.1109/ULTSYM.2019.8925936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating the cardiac motion from ultrasound (US) images is an ill-posed problem that requires regularization. In a recent study, it was shown that constraining the cardiac motion fields to be patch-wise sparse in a learnt overcomplete motion dictionary is more accurate than local parametric models (affine) or global functions (B-splines, total variation). In this work, we extend this method by incorporating temporal smoothness in a multi-frame optical-flow (OF) strategy. An efficient optimization strategy using the constrained split augmented Lagrangian shrinkage algorithm (C-SALSA) is proposed. The performance is evaluated on a realistic simulated cardiac dataset with available ground-truth. A comparison with the pairwise approach shows the interest of the proposed temporal regularization and multi-frame strategy in terms of accuracy and computational time.\",\"PeriodicalId\":6759,\"journal\":{\"name\":\"2019 IEEE International Ultrasonics Symposium (IUS)\",\"volume\":\"13 1-2 1\",\"pages\":\"2326-2329\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Ultrasonics Symposium (IUS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULTSYM.2019.8925936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Ultrasonics Symposium (IUS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2019.8925936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust Cardiac Motion Estimation With Dictionary Learning and Temporal Regularization for Ultrasound Imaging
Estimating the cardiac motion from ultrasound (US) images is an ill-posed problem that requires regularization. In a recent study, it was shown that constraining the cardiac motion fields to be patch-wise sparse in a learnt overcomplete motion dictionary is more accurate than local parametric models (affine) or global functions (B-splines, total variation). In this work, we extend this method by incorporating temporal smoothness in a multi-frame optical-flow (OF) strategy. An efficient optimization strategy using the constrained split augmented Lagrangian shrinkage algorithm (C-SALSA) is proposed. The performance is evaluated on a realistic simulated cardiac dataset with available ground-truth. A comparison with the pairwise approach shows the interest of the proposed temporal regularization and multi-frame strategy in terms of accuracy and computational time.