改进了线性尺寸扩展器的边界

B. Park
{"title":"改进了线性尺寸扩展器的边界","authors":"B. Park","doi":"10.1109/MPCS.1994.367088","DOIUrl":null,"url":null,"abstract":"Linear size expanders have been studied in many fields for their practical use, which is the possibility to connect large numbers of device chips in parallel communication systems. One of the critical points in parallel computer designs has been very high cost of communication between processors and memories. Currently, linear size expanders can be used to construct theoretically optimal interconnection networks with reducing large constant factors. This paper presents an improvement on constructing concentrators using an (n, k, 2rs)/(r/sup 2/-s/sup 2/) expander, which realizes the reduction of the size in a superconcentrator by a constant factor.<<ETX>>","PeriodicalId":64175,"journal":{"name":"专用汽车","volume":"40 1","pages":"96-101"},"PeriodicalIF":0.0000,"publicationDate":"1994-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved bounds on linear size expander\",\"authors\":\"B. Park\",\"doi\":\"10.1109/MPCS.1994.367088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linear size expanders have been studied in many fields for their practical use, which is the possibility to connect large numbers of device chips in parallel communication systems. One of the critical points in parallel computer designs has been very high cost of communication between processors and memories. Currently, linear size expanders can be used to construct theoretically optimal interconnection networks with reducing large constant factors. This paper presents an improvement on constructing concentrators using an (n, k, 2rs)/(r/sup 2/-s/sup 2/) expander, which realizes the reduction of the size in a superconcentrator by a constant factor.<<ETX>>\",\"PeriodicalId\":64175,\"journal\":{\"name\":\"专用汽车\",\"volume\":\"40 1\",\"pages\":\"96-101\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"专用汽车\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1109/MPCS.1994.367088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"专用汽车","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1109/MPCS.1994.367088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

线性尺寸扩展器的实际应用已经在许多领域得到了研究,这是在并行通信系统中连接大量器件芯片的可能性。并行计算机设计的一个关键问题是处理器和存储器之间的通信成本非常高。目前,线性尺寸扩展器可以用来构建理论上最优的互连网络,减少了较大的常数因素。本文提出了一种采用(n, k, 2rs)/(r/sup 2/-s/sup 2/)膨胀器构造浓缩器的改进方法,实现了超浓缩器尺寸减小的常数倍
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved bounds on linear size expander
Linear size expanders have been studied in many fields for their practical use, which is the possibility to connect large numbers of device chips in parallel communication systems. One of the critical points in parallel computer designs has been very high cost of communication between processors and memories. Currently, linear size expanders can be used to construct theoretically optimal interconnection networks with reducing large constant factors. This paper presents an improvement on constructing concentrators using an (n, k, 2rs)/(r/sup 2/-s/sup 2/) expander, which realizes the reduction of the size in a superconcentrator by a constant factor.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
8000
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信