使用近端算法的时空正则化4d心血管c臂CT重建

O. Taubmann, M. Unberath, G. Lauritsch, S. Achenbach, A. Maier
{"title":"使用近端算法的时空正则化4d心血管c臂CT重建","authors":"O. Taubmann, M. Unberath, G. Lauritsch, S. Achenbach, A. Maier","doi":"10.1109/ISBI.2017.7950466","DOIUrl":null,"url":null,"abstract":"Tomographic reconstruction of cardiovascular structures from rotational angiograms acquired with interventional C-arm devices is challenging due to cardiac motion. Gating strategies are widely used to reduce data inconsistency but come at the cost of angular undersampling. We employ a spatio-temporally regularized 4-D reconstruction model, which is solved using a proximal algorithm, to handle the substantial undersampling associated with a strict gating setup. In a numerical phantom study based on the CAVAREV framework, similarity to the ground truth is improved from 82.3% to 87.6%by this approach compared to a state-of-the-art motion compensation algorithm, whereas previous regularized methods evaluated on this phantom achieved results below 80%. We also show first image results for a clinical patient data set.","PeriodicalId":6547,"journal":{"name":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","volume":"26 1","pages":"52-55"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Spatio-temporally regularized 4-D cardiovascular C-arm CT reconstruction using a proximal algorithm\",\"authors\":\"O. Taubmann, M. Unberath, G. Lauritsch, S. Achenbach, A. Maier\",\"doi\":\"10.1109/ISBI.2017.7950466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tomographic reconstruction of cardiovascular structures from rotational angiograms acquired with interventional C-arm devices is challenging due to cardiac motion. Gating strategies are widely used to reduce data inconsistency but come at the cost of angular undersampling. We employ a spatio-temporally regularized 4-D reconstruction model, which is solved using a proximal algorithm, to handle the substantial undersampling associated with a strict gating setup. In a numerical phantom study based on the CAVAREV framework, similarity to the ground truth is improved from 82.3% to 87.6%by this approach compared to a state-of-the-art motion compensation algorithm, whereas previous regularized methods evaluated on this phantom achieved results below 80%. We also show first image results for a clinical patient data set.\",\"PeriodicalId\":6547,\"journal\":{\"name\":\"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)\",\"volume\":\"26 1\",\"pages\":\"52-55\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2017.7950466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2017.7950466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

由于心脏的运动,利用介入c臂装置获得的旋转血管造影重建心血管结构具有挑战性。门控策略被广泛用于减少数据不一致,但代价是角度欠采样。我们采用了一个时空正则化的4-D重建模型,该模型使用近端算法来解决,以处理与严格的门控设置相关的大量欠采样。在一项基于CAVAREV框架的数值模拟研究中,与最先进的运动补偿算法相比,该方法与地面真实的相似性从82.3%提高到87.6%,而之前在该模拟上评估的正则化方法的结果低于80%。我们还展示了临床患者数据集的首次图像结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatio-temporally regularized 4-D cardiovascular C-arm CT reconstruction using a proximal algorithm
Tomographic reconstruction of cardiovascular structures from rotational angiograms acquired with interventional C-arm devices is challenging due to cardiac motion. Gating strategies are widely used to reduce data inconsistency but come at the cost of angular undersampling. We employ a spatio-temporally regularized 4-D reconstruction model, which is solved using a proximal algorithm, to handle the substantial undersampling associated with a strict gating setup. In a numerical phantom study based on the CAVAREV framework, similarity to the ground truth is improved from 82.3% to 87.6%by this approach compared to a state-of-the-art motion compensation algorithm, whereas previous regularized methods evaluated on this phantom achieved results below 80%. We also show first image results for a clinical patient data set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信