在垂直形式填充封口机中使用各种密封条几何形状对纸基涂层材料进行热封和微观评估

IF 2.8 4区 工程技术 Q2 ENGINEERING, MANUFACTURING
M. Merabtene, P. Tanninen, Johann Wolf, Fabian Kayatz, M. Hauptmann, E. Saukkonen, Antti Pesonen, Teija Laukala, J. Varis, Ville Leminen
{"title":"在垂直形式填充封口机中使用各种密封条几何形状对纸基涂层材料进行热封和微观评估","authors":"M. Merabtene, P. Tanninen, Johann Wolf, Fabian Kayatz, M. Hauptmann, E. Saukkonen, Antti Pesonen, Teija Laukala, J. Varis, Ville Leminen","doi":"10.1002/pts.2735","DOIUrl":null,"url":null,"abstract":"With the growing emphasis on minimization of global plastic waste, flexible fibre‐based packaging has gained significant interest over the past few years. Heat‐sealing technology is commonly applied for vertical form‐fill‐seal machine to provide tight closure of packages for maintaining food quality and shelf life. Several different seal bar geometries and adequate heat‐seal parameters are required to improve the seal tightness of the packages. This study aims to compare the heat sealability of thermoplastic film (OPP/PE) and paper‐based materials in vertical form‐fill‐seal machine using various seal bar profiles. The investigation includes seal strength measurement, understanding the causes of leak formation, seal tightness and inspection of the seal using scanning electron microscopy. Results reveal that OPP/PE material has exceptional seal strength and leakproof ability compared with paper‐based materials. However, it has limited operating window because the material shrinks and coarsens at approximately 140°C. Sealing temperature and dwell time are found to be the major factors affecting the seal strength of paper‐based material. Results reveal the PE‐coated papers exhibit nearly twice the seal strength compared with the dispersion‐coated paper. It was difficult to achieve good hot‐tack values with dispersion‐coated paper. During testing, all the paper‐based materials experience delamination and fibre tear, and its severity increases with the increasing material grammage. As plateau temperature is reached, the fibre delamination remains relatively constant. The serrated geometry of seal bar design plays a significant role in providing a satisfactory airtight seal, particularly around the pouch's layer jump. However, flat seal bar designs are not recommended for gas tight applications for paper‐based materials.","PeriodicalId":19626,"journal":{"name":"Packaging Technology and Science","volume":"8 1","pages":"667 - 679"},"PeriodicalIF":2.8000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Heat‐sealing and microscopic evaluation of paper‐based coated materials using various seal bar geometries in vertical form fill seal machine\",\"authors\":\"M. Merabtene, P. Tanninen, Johann Wolf, Fabian Kayatz, M. Hauptmann, E. Saukkonen, Antti Pesonen, Teija Laukala, J. Varis, Ville Leminen\",\"doi\":\"10.1002/pts.2735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the growing emphasis on minimization of global plastic waste, flexible fibre‐based packaging has gained significant interest over the past few years. Heat‐sealing technology is commonly applied for vertical form‐fill‐seal machine to provide tight closure of packages for maintaining food quality and shelf life. Several different seal bar geometries and adequate heat‐seal parameters are required to improve the seal tightness of the packages. This study aims to compare the heat sealability of thermoplastic film (OPP/PE) and paper‐based materials in vertical form‐fill‐seal machine using various seal bar profiles. The investigation includes seal strength measurement, understanding the causes of leak formation, seal tightness and inspection of the seal using scanning electron microscopy. Results reveal that OPP/PE material has exceptional seal strength and leakproof ability compared with paper‐based materials. However, it has limited operating window because the material shrinks and coarsens at approximately 140°C. Sealing temperature and dwell time are found to be the major factors affecting the seal strength of paper‐based material. Results reveal the PE‐coated papers exhibit nearly twice the seal strength compared with the dispersion‐coated paper. It was difficult to achieve good hot‐tack values with dispersion‐coated paper. During testing, all the paper‐based materials experience delamination and fibre tear, and its severity increases with the increasing material grammage. As plateau temperature is reached, the fibre delamination remains relatively constant. The serrated geometry of seal bar design plays a significant role in providing a satisfactory airtight seal, particularly around the pouch's layer jump. However, flat seal bar designs are not recommended for gas tight applications for paper‐based materials.\",\"PeriodicalId\":19626,\"journal\":{\"name\":\"Packaging Technology and Science\",\"volume\":\"8 1\",\"pages\":\"667 - 679\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Packaging Technology and Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/pts.2735\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Packaging Technology and Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pts.2735","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 1

摘要

随着对全球塑料废物最小化的日益重视,软性纤维包装在过去几年中获得了极大的兴趣。热封技术通常应用于垂直形式-填充-封口机,以提供紧密的包装,以保持食品质量和保质期。需要几种不同的密封棒几何形状和适当的热密封参数来提高封装的密封性。本研究的目的是比较热塑性塑料薄膜(OPP/PE)和纸基材料在垂直成型-填充-封口机中使用各种密封条型材的热封性能。调查包括密封强度测量,了解泄漏形成的原因,密封密封性和使用扫描电子显微镜检查密封。结果表明,与纸基材料相比,OPP/PE材料具有优异的密封强度和防泄漏能力。然而,由于材料在约140°C时收缩和变粗,其操作窗口有限。密封温度和保温时间是影响纸基材料密封强度的主要因素。结果表明,PE涂布纸的密封强度几乎是分散涂布纸的两倍。分散涂布纸很难获得良好的热粘值。在测试过程中,所有纸基材料都经历了分层和纤维撕裂,其严重程度随着材料克重的增加而增加。当达到平台温度时,纤维分层保持相对恒定。锯齿形状的密封条设计在提供令人满意的气密密封方面起着重要作用,特别是在袋的层跳周围。然而,平面密封条设计不推荐用于纸基材料的气密应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Heat‐sealing and microscopic evaluation of paper‐based coated materials using various seal bar geometries in vertical form fill seal machine

Heat‐sealing and microscopic evaluation of paper‐based coated materials using various seal bar geometries in vertical form fill seal machine
With the growing emphasis on minimization of global plastic waste, flexible fibre‐based packaging has gained significant interest over the past few years. Heat‐sealing technology is commonly applied for vertical form‐fill‐seal machine to provide tight closure of packages for maintaining food quality and shelf life. Several different seal bar geometries and adequate heat‐seal parameters are required to improve the seal tightness of the packages. This study aims to compare the heat sealability of thermoplastic film (OPP/PE) and paper‐based materials in vertical form‐fill‐seal machine using various seal bar profiles. The investigation includes seal strength measurement, understanding the causes of leak formation, seal tightness and inspection of the seal using scanning electron microscopy. Results reveal that OPP/PE material has exceptional seal strength and leakproof ability compared with paper‐based materials. However, it has limited operating window because the material shrinks and coarsens at approximately 140°C. Sealing temperature and dwell time are found to be the major factors affecting the seal strength of paper‐based material. Results reveal the PE‐coated papers exhibit nearly twice the seal strength compared with the dispersion‐coated paper. It was difficult to achieve good hot‐tack values with dispersion‐coated paper. During testing, all the paper‐based materials experience delamination and fibre tear, and its severity increases with the increasing material grammage. As plateau temperature is reached, the fibre delamination remains relatively constant. The serrated geometry of seal bar design plays a significant role in providing a satisfactory airtight seal, particularly around the pouch's layer jump. However, flat seal bar designs are not recommended for gas tight applications for paper‐based materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Packaging Technology and Science
Packaging Technology and Science 工程技术-工程:制造
CiteScore
4.90
自引率
7.70%
发文量
78
审稿时长
>12 weeks
期刊介绍: Packaging Technology & Science publishes original research, applications and review papers describing significant, novel developments in its field. The Journal welcomes contributions in a wide range of areas in packaging technology and science, including: -Active packaging -Aseptic and sterile packaging -Barrier packaging -Design methodology -Environmental factors and sustainability -Ergonomics -Food packaging -Machinery and engineering for packaging -Marketing aspects of packaging -Materials -Migration -New manufacturing processes and techniques -Testing, analysis and quality control -Transport packaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信