智能传感器在医学研究中的应用综述

IF 0.6 Q4 ENGINEERING, BIOMEDICAL
Yuxiang Zhuang, Yumei Fu, Sheng-Chia Huang, Shuai Gong
{"title":"智能传感器在医学研究中的应用综述","authors":"Yuxiang Zhuang, Yumei Fu, Sheng-Chia Huang, Shuai Gong","doi":"10.53388/bmec2023017","DOIUrl":null,"url":null,"abstract":"The rapid advancement of biomedicine in the twenty-first century has been facilitated by the constant innovation in biomedical technology. The most crucial issue in the field of medicine is to use sensor technology to gather information from primitive organisms, particularly the human body. Design, development, and application of biomedical sensors in the study of clinical diseases’ diagnosis and therapy have all been significantly aided by the advancement of medicine. The interest in creating sensors significantly increased in the 1960s. Chemical and biological sensors have been swiftly created in response to an urgent practical necessity, enabling the creation of selective sensors for the direct detection of diverse ions and compounds. The traditional large-size sensors are quickly turning into miniature sensors and are rapidly applied in biological and medical fields. Currently, wearable electronic blood pressure monitors, home blood glucose meters, and quick body surface digital thermometers are commonly used. The advent of a wide variety of medical-grade wearable sensors that will enable real-time biometric data tracking of a large range of physiological characteristics will likely be one of the most revolutionary, exciting, and difficult changes to come to medicine over the next several years. For possible uses in the entertainment, health monitoring, and medical care industries, high-performance flexible strain sensors connected to clothing or human skin are necessary. The use of sensors in the development of biomedical diagnostic tools and medical equipment will enhance human quality of life in the twenty-first century. This article will introduce the current medical sensor field related to sensors for physical quantities, sensors for chemical quantities, sensors for biological quantities such as electronic nose","PeriodicalId":8862,"journal":{"name":"Biomedical Engineering: Applications, Basis and Communications","volume":"51 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The application of intelligent sensors in medical research: a review\",\"authors\":\"Yuxiang Zhuang, Yumei Fu, Sheng-Chia Huang, Shuai Gong\",\"doi\":\"10.53388/bmec2023017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid advancement of biomedicine in the twenty-first century has been facilitated by the constant innovation in biomedical technology. The most crucial issue in the field of medicine is to use sensor technology to gather information from primitive organisms, particularly the human body. Design, development, and application of biomedical sensors in the study of clinical diseases’ diagnosis and therapy have all been significantly aided by the advancement of medicine. The interest in creating sensors significantly increased in the 1960s. Chemical and biological sensors have been swiftly created in response to an urgent practical necessity, enabling the creation of selective sensors for the direct detection of diverse ions and compounds. The traditional large-size sensors are quickly turning into miniature sensors and are rapidly applied in biological and medical fields. Currently, wearable electronic blood pressure monitors, home blood glucose meters, and quick body surface digital thermometers are commonly used. The advent of a wide variety of medical-grade wearable sensors that will enable real-time biometric data tracking of a large range of physiological characteristics will likely be one of the most revolutionary, exciting, and difficult changes to come to medicine over the next several years. For possible uses in the entertainment, health monitoring, and medical care industries, high-performance flexible strain sensors connected to clothing or human skin are necessary. The use of sensors in the development of biomedical diagnostic tools and medical equipment will enhance human quality of life in the twenty-first century. This article will introduce the current medical sensor field related to sensors for physical quantities, sensors for chemical quantities, sensors for biological quantities such as electronic nose\",\"PeriodicalId\":8862,\"journal\":{\"name\":\"Biomedical Engineering: Applications, Basis and Communications\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering: Applications, Basis and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53388/bmec2023017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering: Applications, Basis and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53388/bmec2023017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

生物医学技术的不断创新促进了21世纪生物医学的快速发展。医学领域最关键的问题是利用传感器技术从原始生物,特别是人体中收集信息。生物医学传感器在临床疾病诊断和治疗研究中的设计、开发和应用都得到了医学进步的极大帮助。20世纪60年代,人们对制造传感器的兴趣显著增加。由于迫切的实际需要,化学和生物传感器迅速被创造出来,从而能够创造出直接检测各种离子和化合物的选择性传感器。传统的大尺寸传感器正迅速向微型传感器转变,并迅速应用于生物和医学领域。目前常用的有可穿戴式电子血压计、家用血糖仪、快速体表数字体温计等。各种各样的医疗级可穿戴传感器的出现,将使实时生物识别数据跟踪大范围的生理特征,这可能是未来几年医学领域最具革命性、最令人兴奋和最困难的变化之一。对于娱乐、健康监测和医疗保健行业的可能用途,连接到衣服或人体皮肤的高性能柔性应变传感器是必要的。在生物医学诊断工具和医疗设备的开发中使用传感器将提高二十一世纪人类的生活质量。本文将介绍目前医学传感器领域相关的物理量传感器、化学量传感器、生物量传感器等电子鼻
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The application of intelligent sensors in medical research: a review
The rapid advancement of biomedicine in the twenty-first century has been facilitated by the constant innovation in biomedical technology. The most crucial issue in the field of medicine is to use sensor technology to gather information from primitive organisms, particularly the human body. Design, development, and application of biomedical sensors in the study of clinical diseases’ diagnosis and therapy have all been significantly aided by the advancement of medicine. The interest in creating sensors significantly increased in the 1960s. Chemical and biological sensors have been swiftly created in response to an urgent practical necessity, enabling the creation of selective sensors for the direct detection of diverse ions and compounds. The traditional large-size sensors are quickly turning into miniature sensors and are rapidly applied in biological and medical fields. Currently, wearable electronic blood pressure monitors, home blood glucose meters, and quick body surface digital thermometers are commonly used. The advent of a wide variety of medical-grade wearable sensors that will enable real-time biometric data tracking of a large range of physiological characteristics will likely be one of the most revolutionary, exciting, and difficult changes to come to medicine over the next several years. For possible uses in the entertainment, health monitoring, and medical care industries, high-performance flexible strain sensors connected to clothing or human skin are necessary. The use of sensors in the development of biomedical diagnostic tools and medical equipment will enhance human quality of life in the twenty-first century. This article will introduce the current medical sensor field related to sensors for physical quantities, sensors for chemical quantities, sensors for biological quantities such as electronic nose
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Engineering: Applications, Basis and Communications
Biomedical Engineering: Applications, Basis and Communications Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
1.50
自引率
11.10%
发文量
36
审稿时长
4 months
期刊介绍: Biomedical Engineering: Applications, Basis and Communications is an international, interdisciplinary journal aiming at publishing up-to-date contributions on original clinical and basic research in the biomedical engineering. Research of biomedical engineering has grown tremendously in the past few decades. Meanwhile, several outstanding journals in the field have emerged, with different emphases and objectives. We hope this journal will serve as a new forum for both scientists and clinicians to share their ideas and the results of their studies. Biomedical Engineering: Applications, Basis and Communications explores all facets of biomedical engineering, with emphasis on both the clinical and scientific aspects of the study. It covers the fields of bioelectronics, biomaterials, biomechanics, bioinformatics, nano-biological sciences and clinical engineering. The journal fulfils this aim by publishing regular research / clinical articles, short communications, technical notes and review papers. Papers from both basic research and clinical investigations will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信