开普勒多行行星系统的发现和遗产

IF 11.7 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Jason H. Steffen , Jack J. Lissauer
{"title":"开普勒多行行星系统的发现和遗产","authors":"Jason H. Steffen ,&nbsp;Jack J. Lissauer","doi":"10.1016/j.newar.2019.04.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>We revisit the discovery and implications of the first candidate systems to contain multiple transiting exoplanets. These systems were discovered using data from the </span><em>Kepler</em> space telescope. The initial paper, presenting five systems (Steffen et al., 2010a), was posted online at the time the project released the first catalog of <em>Kepler</em><span><span> planet candidates. The first extensive analysis of the observed population of multis was presented in a follow-up paper published the following year (Lissauer et al., 2011b). Multiply-transiting systems allow us to answer a variety of important questions related to the formation and dynamical evolution of </span>planetary systems. These two papers addressed a wide array of topics including: the distribution of orbital period ratios, planet size ratios, system architectures, mean-motion resonance, orbital eccentricities, planet validation and confirmation, and the identification of different planet populations. They set the stage for many subsequent, detailed studies by other groups. Intensive studies of individual multiplanet systems provided some of </span><em>Kepler</em>’s most important exoplanet discoveries. As we examine the scientific impact of the first of these systems, we also present some history of the people and circumstances surrounding their discoveries.</p></div>","PeriodicalId":19718,"journal":{"name":"New Astronomy Reviews","volume":"83 ","pages":"Pages 49-60"},"PeriodicalIF":11.7000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.newar.2019.04.001","citationCount":"1","resultStr":"{\"title\":\"The discovery and legacy of Kepler’s multi-transiting planetary systems\",\"authors\":\"Jason H. Steffen ,&nbsp;Jack J. Lissauer\",\"doi\":\"10.1016/j.newar.2019.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We revisit the discovery and implications of the first candidate systems to contain multiple transiting exoplanets. These systems were discovered using data from the </span><em>Kepler</em> space telescope. The initial paper, presenting five systems (Steffen et al., 2010a), was posted online at the time the project released the first catalog of <em>Kepler</em><span><span> planet candidates. The first extensive analysis of the observed population of multis was presented in a follow-up paper published the following year (Lissauer et al., 2011b). Multiply-transiting systems allow us to answer a variety of important questions related to the formation and dynamical evolution of </span>planetary systems. These two papers addressed a wide array of topics including: the distribution of orbital period ratios, planet size ratios, system architectures, mean-motion resonance, orbital eccentricities, planet validation and confirmation, and the identification of different planet populations. They set the stage for many subsequent, detailed studies by other groups. Intensive studies of individual multiplanet systems provided some of </span><em>Kepler</em>’s most important exoplanet discoveries. As we examine the scientific impact of the first of these systems, we also present some history of the people and circumstances surrounding their discoveries.</p></div>\",\"PeriodicalId\":19718,\"journal\":{\"name\":\"New Astronomy Reviews\",\"volume\":\"83 \",\"pages\":\"Pages 49-60\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.newar.2019.04.001\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Astronomy Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387647318300654\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Astronomy Reviews","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387647318300654","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 1

摘要

我们重新审视了包含多个过境系外行星的第一个候选系统的发现和含义。这些星系是利用开普勒太空望远镜的数据发现的。最初的论文介绍了五个系统(Steffen et al., 2010a),该论文在该项目发布第一个开普勒行星候选目录时发布在网上。对观察到的多种群的第一次广泛分析发表在次年发表的后续论文中(Lissauer et al., 2011b)。多重凌日系统使我们能够回答与行星系统的形成和动态演化有关的各种重要问题。这两篇论文讨论了一系列广泛的主题,包括:轨道周期比的分布、行星大小比、系统架构、平均运动共振、轨道偏心、行星验证和确认,以及不同行星群的识别。他们为其他小组随后进行的许多详细研究奠定了基础。对单个多行星系统的深入研究为开普勒提供了一些最重要的系外行星发现。当我们研究第一个系统的科学影响时,我们也介绍了一些人们的历史和他们发现的环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The discovery and legacy of Kepler’s multi-transiting planetary systems

We revisit the discovery and implications of the first candidate systems to contain multiple transiting exoplanets. These systems were discovered using data from the Kepler space telescope. The initial paper, presenting five systems (Steffen et al., 2010a), was posted online at the time the project released the first catalog of Kepler planet candidates. The first extensive analysis of the observed population of multis was presented in a follow-up paper published the following year (Lissauer et al., 2011b). Multiply-transiting systems allow us to answer a variety of important questions related to the formation and dynamical evolution of planetary systems. These two papers addressed a wide array of topics including: the distribution of orbital period ratios, planet size ratios, system architectures, mean-motion resonance, orbital eccentricities, planet validation and confirmation, and the identification of different planet populations. They set the stage for many subsequent, detailed studies by other groups. Intensive studies of individual multiplanet systems provided some of Kepler’s most important exoplanet discoveries. As we examine the scientific impact of the first of these systems, we also present some history of the people and circumstances surrounding their discoveries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Astronomy Reviews
New Astronomy Reviews 地学天文-天文与天体物理
CiteScore
18.60
自引率
1.70%
发文量
7
审稿时长
11.3 weeks
期刊介绍: New Astronomy Reviews publishes review articles in all fields of astronomy and astrophysics: theoretical, observational and instrumental. This international review journal is written for a broad audience of professional astronomers and astrophysicists. The journal covers solar physics, planetary systems, stellar, galactic and extra-galactic astronomy and astrophysics, as well as cosmology. New Astronomy Reviews is also open for proposals covering interdisciplinary and emerging topics such as astrobiology, astroparticle physics, and astrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信