{"title":"基于差分隐私的自适应随机森林医疗数据流挖掘分类模型","authors":"Hayder K. Fatlawi, A. Kiss","doi":"10.2478/ausi-2021-0001","DOIUrl":null,"url":null,"abstract":"Abstract Most typical data mining techniques are developed based on training the batch data which makes the task of mining the data stream represent a significant challenge. On the other hand, providing a mechanism to perform data mining operations without revealing the patient’s identity has increasing importance in the data mining field. In this work, a classification model with differential privacy is proposed for mining the medical data stream using Adaptive Random Forest (ARF). The experimental results of applying the proposed model on four medical datasets show that ARF mostly has a more stable performance over the other six techniques.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"36 1","pages":"1 - 20"},"PeriodicalIF":0.3000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Differential privacy based classification model for mining medical data stream using adaptive random forest\",\"authors\":\"Hayder K. Fatlawi, A. Kiss\",\"doi\":\"10.2478/ausi-2021-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Most typical data mining techniques are developed based on training the batch data which makes the task of mining the data stream represent a significant challenge. On the other hand, providing a mechanism to perform data mining operations without revealing the patient’s identity has increasing importance in the data mining field. In this work, a classification model with differential privacy is proposed for mining the medical data stream using Adaptive Random Forest (ARF). The experimental results of applying the proposed model on four medical datasets show that ARF mostly has a more stable performance over the other six techniques.\",\"PeriodicalId\":41480,\"journal\":{\"name\":\"Acta Universitatis Sapientiae Informatica\",\"volume\":\"36 1\",\"pages\":\"1 - 20\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Universitatis Sapientiae Informatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausi-2021-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2021-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Differential privacy based classification model for mining medical data stream using adaptive random forest
Abstract Most typical data mining techniques are developed based on training the batch data which makes the task of mining the data stream represent a significant challenge. On the other hand, providing a mechanism to perform data mining operations without revealing the patient’s identity has increasing importance in the data mining field. In this work, a classification model with differential privacy is proposed for mining the medical data stream using Adaptive Random Forest (ARF). The experimental results of applying the proposed model on four medical datasets show that ARF mostly has a more stable performance over the other six techniques.