基于差分隐私的自适应随机森林医疗数据流挖掘分类模型

IF 0.3 Q4 COMPUTER SCIENCE, THEORY & METHODS
Hayder K. Fatlawi, A. Kiss
{"title":"基于差分隐私的自适应随机森林医疗数据流挖掘分类模型","authors":"Hayder K. Fatlawi, A. Kiss","doi":"10.2478/ausi-2021-0001","DOIUrl":null,"url":null,"abstract":"Abstract Most typical data mining techniques are developed based on training the batch data which makes the task of mining the data stream represent a significant challenge. On the other hand, providing a mechanism to perform data mining operations without revealing the patient’s identity has increasing importance in the data mining field. In this work, a classification model with differential privacy is proposed for mining the medical data stream using Adaptive Random Forest (ARF). The experimental results of applying the proposed model on four medical datasets show that ARF mostly has a more stable performance over the other six techniques.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"36 1","pages":"1 - 20"},"PeriodicalIF":0.3000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Differential privacy based classification model for mining medical data stream using adaptive random forest\",\"authors\":\"Hayder K. Fatlawi, A. Kiss\",\"doi\":\"10.2478/ausi-2021-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Most typical data mining techniques are developed based on training the batch data which makes the task of mining the data stream represent a significant challenge. On the other hand, providing a mechanism to perform data mining operations without revealing the patient’s identity has increasing importance in the data mining field. In this work, a classification model with differential privacy is proposed for mining the medical data stream using Adaptive Random Forest (ARF). The experimental results of applying the proposed model on four medical datasets show that ARF mostly has a more stable performance over the other six techniques.\",\"PeriodicalId\":41480,\"journal\":{\"name\":\"Acta Universitatis Sapientiae Informatica\",\"volume\":\"36 1\",\"pages\":\"1 - 20\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Universitatis Sapientiae Informatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausi-2021-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2021-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2

摘要

大多数典型的数据挖掘技术都是基于批量数据的训练而发展起来的,这使得数据流的挖掘任务具有很大的挑战性。另一方面,提供一种不泄露患者身份的机制来执行数据挖掘操作在数据挖掘领域变得越来越重要。本文提出了一种基于自适应随机森林(ARF)的医疗数据流分类模型。将该模型应用于4个医疗数据集的实验结果表明,相对于其他6种技术,ARF在大多数情况下具有更稳定的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differential privacy based classification model for mining medical data stream using adaptive random forest
Abstract Most typical data mining techniques are developed based on training the batch data which makes the task of mining the data stream represent a significant challenge. On the other hand, providing a mechanism to perform data mining operations without revealing the patient’s identity has increasing importance in the data mining field. In this work, a classification model with differential privacy is proposed for mining the medical data stream using Adaptive Random Forest (ARF). The experimental results of applying the proposed model on four medical datasets show that ARF mostly has a more stable performance over the other six techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Universitatis Sapientiae Informatica
Acta Universitatis Sapientiae Informatica COMPUTER SCIENCE, THEORY & METHODS-
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信