具有协变量的区间截尾数据下广义指数模型的性能评价

IF 0.6 Q4 STATISTICS & PROBABILITY
Nada Alharbi, Jayanthi A., H. A., W. Ling
{"title":"具有协变量的区间截尾数据下广义指数模型的性能评价","authors":"Nada Alharbi, Jayanthi A., H. A., W. Ling","doi":"10.17713/ajs.v51i1.1192","DOIUrl":null,"url":null,"abstract":"This study aims to extend the generalized exponential model (GEM) to include covariates in the presence of interval-censored data. The maximum likelihood estimator (MLE) was obtained for the parameter of the model formulated. Afterward, a thorough simulation study was carried out to evaluate the estimator's performance based on the values of bias, standard error (SE), and root mean square error (RMSE). The result indicated that the (SE) and (RMSE) decrease with the increase in sample sizes and decrease in censoring proportions. Finally, the performance of the Wald confidence interval estimation technique for the GE model with interval-censored data covariate was assessed by a coverage probability study at several censoring proportions and different sample sizes.","PeriodicalId":51761,"journal":{"name":"Austrian Journal of Statistics","volume":"15 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing Performance of the Generalized Exponential Model in the Presence of the Interval Censored Data with Covariate\",\"authors\":\"Nada Alharbi, Jayanthi A., H. A., W. Ling\",\"doi\":\"10.17713/ajs.v51i1.1192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to extend the generalized exponential model (GEM) to include covariates in the presence of interval-censored data. The maximum likelihood estimator (MLE) was obtained for the parameter of the model formulated. Afterward, a thorough simulation study was carried out to evaluate the estimator's performance based on the values of bias, standard error (SE), and root mean square error (RMSE). The result indicated that the (SE) and (RMSE) decrease with the increase in sample sizes and decrease in censoring proportions. Finally, the performance of the Wald confidence interval estimation technique for the GE model with interval-censored data covariate was assessed by a coverage probability study at several censoring proportions and different sample sizes.\",\"PeriodicalId\":51761,\"journal\":{\"name\":\"Austrian Journal of Statistics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Austrian Journal of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17713/ajs.v51i1.1192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Austrian Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17713/ajs.v51i1.1192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在扩展广义指数模型(GEM),以包括存在区间截尾数据的协变量。对所建立的模型的参数进行了极大似然估计。随后,进行了全面的模拟研究,以评估基于偏差,标准误差(SE)和均方根误差(RMSE)值的估计器的性能。结果表明,(SE)和(RMSE)随样本量的增加和删减比例的减小而减小。最后,通过几种审查比例和不同样本量的覆盖概率研究,评估了具有区间审查数据协变量的GE模型的Wald置信区间估计技术的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing Performance of the Generalized Exponential Model in the Presence of the Interval Censored Data with Covariate
This study aims to extend the generalized exponential model (GEM) to include covariates in the presence of interval-censored data. The maximum likelihood estimator (MLE) was obtained for the parameter of the model formulated. Afterward, a thorough simulation study was carried out to evaluate the estimator's performance based on the values of bias, standard error (SE), and root mean square error (RMSE). The result indicated that the (SE) and (RMSE) decrease with the increase in sample sizes and decrease in censoring proportions. Finally, the performance of the Wald confidence interval estimation technique for the GE model with interval-censored data covariate was assessed by a coverage probability study at several censoring proportions and different sample sizes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Austrian Journal of Statistics
Austrian Journal of Statistics STATISTICS & PROBABILITY-
CiteScore
1.10
自引率
0.00%
发文量
30
审稿时长
24 weeks
期刊介绍: The Austrian Journal of Statistics is an open-access journal (without any fees) with a long history and is published approximately quarterly by the Austrian Statistical Society. Its general objective is to promote and extend the use of statistical methods in all kind of theoretical and applied disciplines. The Austrian Journal of Statistics is indexed in many data bases, such as Scopus (by Elsevier), Web of Science - ESCI by Clarivate Analytics (formely Thompson & Reuters), DOAJ, Scimago, and many more. The current estimated impact factor (via Publish or Perish) is 0.775, see HERE, or even more indices HERE. Austrian Journal of Statistics ISNN number is 1026597X Original papers and review articles in English will be published in the Austrian Journal of Statistics if judged consistently with these general aims. All papers will be refereed. Special topics sections will appear from time to time. Each section will have as a theme a specialized area of statistical application, theory, or methodology. Technical notes or problems for considerations under Shorter Communications are also invited. A special section is reserved for book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信