奇阶阿贝尔基本群流形上的正标量曲率

IF 2 1区 数学
B. Hanke
{"title":"奇阶阿贝尔基本群流形上的正标量曲率","authors":"B. Hanke","doi":"10.2140/GT.2021.25.497","DOIUrl":null,"url":null,"abstract":"We introduce Riemannian metrics of positive scalar curvature on manifolds with Baas-Sullivan singularities, prove a corresponding homology invariance principle and discuss admissible products. Using this theory we construct positive scalar curvature metrics on closed smooth manifolds of dimension at least five which have odd order abelian fundamental groups, are non-spin and atoral. This solves the Gromov-Lawson-Rosenberg conjecture for a new class of manifolds with finite fundamental groups.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":"116 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2019-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Positive scalar curvature on manifolds with odd order abelian fundamental groups\",\"authors\":\"B. Hanke\",\"doi\":\"10.2140/GT.2021.25.497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce Riemannian metrics of positive scalar curvature on manifolds with Baas-Sullivan singularities, prove a corresponding homology invariance principle and discuss admissible products. Using this theory we construct positive scalar curvature metrics on closed smooth manifolds of dimension at least five which have odd order abelian fundamental groups, are non-spin and atoral. This solves the Gromov-Lawson-Rosenberg conjecture for a new class of manifolds with finite fundamental groups.\",\"PeriodicalId\":55105,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"116 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2019-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/GT.2021.25.497\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/GT.2021.25.497","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在具有Baas-Sullivan奇点的流形上引入了正标量曲率的黎曼度量,证明了相应的同调不变性原理,并讨论了可容许积。利用这一理论,我们在至少五维的闭光滑流形上构造了正标量曲率度量,这些流形具有奇阶阿贝尔基本群,是非自旋的和非自旋的。本文解决了一类具有有限基本群的流形的Gromov-Lawson-Rosenberg猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Positive scalar curvature on manifolds with odd order abelian fundamental groups
We introduce Riemannian metrics of positive scalar curvature on manifolds with Baas-Sullivan singularities, prove a corresponding homology invariance principle and discuss admissible products. Using this theory we construct positive scalar curvature metrics on closed smooth manifolds of dimension at least five which have odd order abelian fundamental groups, are non-spin and atoral. This solves the Gromov-Lawson-Rosenberg conjecture for a new class of manifolds with finite fundamental groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geometry & Topology
Geometry & Topology 数学-数学
自引率
5.00%
发文量
34
期刊介绍: Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers. The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信