T. Kodera, G. Yamahata, T. Kambara, K. Horibe, K. Uchida, C. Marcus, S. Oda
{"title":"光刻定义硅量子点中的自旋相关隧道效应","authors":"T. Kodera, G. Yamahata, T. Kambara, K. Horibe, K. Uchida, C. Marcus, S. Oda","doi":"10.1109/SNW.2010.5562576","DOIUrl":null,"url":null,"abstract":"We realized lithographically-defined electrically-tunable silicon quantum dots (Si QDs) without unintentional localized potentials by improving device structures and fabrication techniques. Carrier density was tuned with a top gate and QD-potentials were controlled with the side gates. We succeeded in observing spin-related tunneling phenomena using the double QD device.","PeriodicalId":6433,"journal":{"name":"2010 Silicon Nanoelectronics Workshop","volume":"9 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spin-related tunneling in lithographically-defined silicon quantum dots\",\"authors\":\"T. Kodera, G. Yamahata, T. Kambara, K. Horibe, K. Uchida, C. Marcus, S. Oda\",\"doi\":\"10.1109/SNW.2010.5562576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We realized lithographically-defined electrically-tunable silicon quantum dots (Si QDs) without unintentional localized potentials by improving device structures and fabrication techniques. Carrier density was tuned with a top gate and QD-potentials were controlled with the side gates. We succeeded in observing spin-related tunneling phenomena using the double QD device.\",\"PeriodicalId\":6433,\"journal\":{\"name\":\"2010 Silicon Nanoelectronics Workshop\",\"volume\":\"9 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Silicon Nanoelectronics Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SNW.2010.5562576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Silicon Nanoelectronics Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNW.2010.5562576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spin-related tunneling in lithographically-defined silicon quantum dots
We realized lithographically-defined electrically-tunable silicon quantum dots (Si QDs) without unintentional localized potentials by improving device structures and fabrication techniques. Carrier density was tuned with a top gate and QD-potentials were controlled with the side gates. We succeeded in observing spin-related tunneling phenomena using the double QD device.