短期轮作能源人工林不同收获制度下作物生产技术的环境生命周期评价

Q4 Agricultural and Biological Sciences
A. Polgár, Z. Kovács, Veronika Elekné Fodor, A. Bidló
{"title":"短期轮作能源人工林不同收获制度下作物生产技术的环境生命周期评价","authors":"A. Polgár, Z. Kovács, Veronika Elekné Fodor, A. Bidló","doi":"10.2478/aslh-2019-0005","DOIUrl":null,"url":null,"abstract":"Abstract Environmental life cycle assessment (LCA) was developed as a tool for sustainable, decision-supporting environmental management. Applying agricultural sector-LCA in order to achieve both internal (comparative) and external (efficiency enhancing) benefits is a priority. Since the life-cycle assessment of products and processes attracts great interest, applying the method in agriculture is relevant. Our study undertakes a comparative environmental life-cycle assessment (LCA) of local arable crop production technologies used for the main cultivated plants: maize, sunflower, lucerne, cereals, and canola (environmental data in the territorial approach calculated on a 1 ha unit and in the quantitative approach calculated on 1 t of produce). We prepared an environmental inventory of the arable crop production technologies, constructed the life-cycle models, and executed the impact assessment. We also compiled an environmental ranking of technologies. In the impact interpretation, we compared the results with the values of short rotation energy plantations in each impact category. We analysed carbon footprints closely. The obtained results help better assess environmental impacts, climate risks, and climate change as they pertain to arable crop production technologies, which advances the selection of appropriate technologies adjusted to environmental sensitivities.","PeriodicalId":53620,"journal":{"name":"Acta Silvatica et Lignaria Hungarica","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Environmental Life-Cycle Assessment of Arable Crop Production Technologies Compared to Different Harvesting Work Systems in Short Rotation Energy Plantations\",\"authors\":\"A. Polgár, Z. Kovács, Veronika Elekné Fodor, A. Bidló\",\"doi\":\"10.2478/aslh-2019-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Environmental life cycle assessment (LCA) was developed as a tool for sustainable, decision-supporting environmental management. Applying agricultural sector-LCA in order to achieve both internal (comparative) and external (efficiency enhancing) benefits is a priority. Since the life-cycle assessment of products and processes attracts great interest, applying the method in agriculture is relevant. Our study undertakes a comparative environmental life-cycle assessment (LCA) of local arable crop production technologies used for the main cultivated plants: maize, sunflower, lucerne, cereals, and canola (environmental data in the territorial approach calculated on a 1 ha unit and in the quantitative approach calculated on 1 t of produce). We prepared an environmental inventory of the arable crop production technologies, constructed the life-cycle models, and executed the impact assessment. We also compiled an environmental ranking of technologies. In the impact interpretation, we compared the results with the values of short rotation energy plantations in each impact category. We analysed carbon footprints closely. The obtained results help better assess environmental impacts, climate risks, and climate change as they pertain to arable crop production technologies, which advances the selection of appropriate technologies adjusted to environmental sensitivities.\",\"PeriodicalId\":53620,\"journal\":{\"name\":\"Acta Silvatica et Lignaria Hungarica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Silvatica et Lignaria Hungarica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/aslh-2019-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Silvatica et Lignaria Hungarica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/aslh-2019-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 3

摘要

环境生命周期评价(LCA)是一种可持续的、支持决策的环境管理工具。应用农业部门lca以实现内部(比较)和外部(提高效率)效益是一个优先事项。由于产品和过程的生命周期评估引起了极大的兴趣,因此将该方法应用于农业是相关的。我们的研究对主要栽培植物(玉米、向日葵、苜蓿、谷物和油菜)使用的当地可耕地作物生产技术进行了比较环境生命周期评估(LCA)(以1公顷为单位计算的土地方法和以1吨产品计算的定量方法的环境数据)。编制了耕地作物生产技术环境清单,构建了全生命周期模型,并进行了影响评价。我们还编制了一份技术环境排名。在影响解释中,我们将结果与每个影响类别的短轮作能量人工林的值进行了比较。我们仔细分析了碳足迹。所获得的结果有助于更好地评估与耕地作物生产技术有关的环境影响、气候风险和气候变化,从而推进了适应环境敏感性的适当技术的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Environmental Life-Cycle Assessment of Arable Crop Production Technologies Compared to Different Harvesting Work Systems in Short Rotation Energy Plantations
Abstract Environmental life cycle assessment (LCA) was developed as a tool for sustainable, decision-supporting environmental management. Applying agricultural sector-LCA in order to achieve both internal (comparative) and external (efficiency enhancing) benefits is a priority. Since the life-cycle assessment of products and processes attracts great interest, applying the method in agriculture is relevant. Our study undertakes a comparative environmental life-cycle assessment (LCA) of local arable crop production technologies used for the main cultivated plants: maize, sunflower, lucerne, cereals, and canola (environmental data in the territorial approach calculated on a 1 ha unit and in the quantitative approach calculated on 1 t of produce). We prepared an environmental inventory of the arable crop production technologies, constructed the life-cycle models, and executed the impact assessment. We also compiled an environmental ranking of technologies. In the impact interpretation, we compared the results with the values of short rotation energy plantations in each impact category. We analysed carbon footprints closely. The obtained results help better assess environmental impacts, climate risks, and climate change as they pertain to arable crop production technologies, which advances the selection of appropriate technologies adjusted to environmental sensitivities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Silvatica et Lignaria Hungarica
Acta Silvatica et Lignaria Hungarica Agricultural and Biological Sciences-Forestry
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信