二阶双曲型方程的边界罚等几何分析

Quanling Deng, P. Behnoudfar, V. Calo
{"title":"二阶双曲型方程的边界罚等几何分析","authors":"Quanling Deng, P. Behnoudfar, V. Calo","doi":"10.48550/arXiv.2203.12373","DOIUrl":null,"url":null,"abstract":"Explicit time-marching schemes are popular for solving time-dependent partial differential equations; one of the biggest challenges these methods suffer is increasing the critical time-marching step size that guarantees numerical stability. In general, there are two ways to increase the critical step size. One is to reduce the stiffness of the spatially discretized system, while the other is to design time-marching schemes with larger stability regions. In this paper, we focus on the recently proposed explicit generalized-$\\alpha$ method for second-order hyperbolic equations and increase the critical step size by reducing the stiffness of the isogeometric-discretized system. In particular, we apply boundary penalization to lessen the system's stiffness. For $p$-th order $C^{p-1}$ isogeometric elements, we show numerically that the critical step size increases by a factor of $\\sqrt{\\frac{p^2-3p+6}{4}}$, which indicates the advantages of using the proposed method, especially for high-order elements. Various examples in one, two, and three dimensions validate the performance of the proposed technique.","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"64 1","pages":"101861"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A boundary-penalized isogeometric analysis for second-order hyperbolic equations\",\"authors\":\"Quanling Deng, P. Behnoudfar, V. Calo\",\"doi\":\"10.48550/arXiv.2203.12373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Explicit time-marching schemes are popular for solving time-dependent partial differential equations; one of the biggest challenges these methods suffer is increasing the critical time-marching step size that guarantees numerical stability. In general, there are two ways to increase the critical step size. One is to reduce the stiffness of the spatially discretized system, while the other is to design time-marching schemes with larger stability regions. In this paper, we focus on the recently proposed explicit generalized-$\\\\alpha$ method for second-order hyperbolic equations and increase the critical step size by reducing the stiffness of the isogeometric-discretized system. In particular, we apply boundary penalization to lessen the system's stiffness. For $p$-th order $C^{p-1}$ isogeometric elements, we show numerically that the critical step size increases by a factor of $\\\\sqrt{\\\\frac{p^2-3p+6}{4}}$, which indicates the advantages of using the proposed method, especially for high-order elements. Various examples in one, two, and three dimensions validate the performance of the proposed technique.\",\"PeriodicalId\":14601,\"journal\":{\"name\":\"J. Comput. Sci.\",\"volume\":\"64 1\",\"pages\":\"101861\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2203.12373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2203.12373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

显式时间推进格式是求解时变偏微分方程的常用格式;这些方法面临的最大挑战之一是增加保证数值稳定性的关键时间推进步长。通常,有两种方法可以增加临界步长。一是降低空间离散系统的刚度,二是设计具有较大稳定区域的时间推进方案。本文重点讨论了最近提出的二阶双曲方程的显式广义- $\alpha$方法,并通过减小等几何离散系统的刚度来提高临界步长。特别地,我们采用边界惩罚来降低系统的刚度。对于$p$ -阶$C^{p-1}$等高几何元素,我们通过数值计算表明,临界步长增加了一个因子$\sqrt{\frac{p^2-3p+6}{4}}$,这表明使用所提出的方法的优点,特别是对于高阶元素。一维、二维和三维的各种示例验证了所提出技术的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A boundary-penalized isogeometric analysis for second-order hyperbolic equations
Explicit time-marching schemes are popular for solving time-dependent partial differential equations; one of the biggest challenges these methods suffer is increasing the critical time-marching step size that guarantees numerical stability. In general, there are two ways to increase the critical step size. One is to reduce the stiffness of the spatially discretized system, while the other is to design time-marching schemes with larger stability regions. In this paper, we focus on the recently proposed explicit generalized-$\alpha$ method for second-order hyperbolic equations and increase the critical step size by reducing the stiffness of the isogeometric-discretized system. In particular, we apply boundary penalization to lessen the system's stiffness. For $p$-th order $C^{p-1}$ isogeometric elements, we show numerically that the critical step size increases by a factor of $\sqrt{\frac{p^2-3p+6}{4}}$, which indicates the advantages of using the proposed method, especially for high-order elements. Various examples in one, two, and three dimensions validate the performance of the proposed technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信