使用特征函数的功能数据的双样本测试

IF 0.6 Q4 STATISTICS & PROBABILITY
M. Krzyśko, Łukasz Smaga
{"title":"使用特征函数的功能数据的双样本测试","authors":"M. Krzyśko, Łukasz Smaga","doi":"10.17713/AJS.V50I4.1099","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the two-sample problem for univariate and multivariate functional data. To solve this problem, we use tool of characteristic function and a basis function representation of functional data. We construct test statistics for conformity of distributions based on a weighted distance between characteristic functions of random vectors obtained in basis representation. Different weight functions result in different test statistics, whose distributions are approximated by permutation method. Testing procedures are implemented in the R program and the code is available. Simulation study shows good finite sample properties of proposed methods, while real data example illustrates the application of them.","PeriodicalId":51761,"journal":{"name":"Austrian Journal of Statistics","volume":"13 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Two-sample Tests for Functional Data Using Characteristic Functions\",\"authors\":\"M. Krzyśko, Łukasz Smaga\",\"doi\":\"10.17713/AJS.V50I4.1099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the two-sample problem for univariate and multivariate functional data. To solve this problem, we use tool of characteristic function and a basis function representation of functional data. We construct test statistics for conformity of distributions based on a weighted distance between characteristic functions of random vectors obtained in basis representation. Different weight functions result in different test statistics, whose distributions are approximated by permutation method. Testing procedures are implemented in the R program and the code is available. Simulation study shows good finite sample properties of proposed methods, while real data example illustrates the application of them.\",\"PeriodicalId\":51761,\"journal\":{\"name\":\"Austrian Journal of Statistics\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Austrian Journal of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17713/AJS.V50I4.1099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Austrian Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17713/AJS.V50I4.1099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

摘要

本文考虑单变量和多变量泛函数据的双样本问题。为了解决这个问题,我们使用了特征函数工具和函数数据的基函数表示。基于基表示中得到的随机向量的特征函数之间的加权距离,构造了分布一致性的检验统计量。不同的权函数产生不同的检验统计量,检验统计量的分布用置换法近似。测试程序在R程序中实现,代码可用。仿真研究表明了所提方法具有良好的有限样本特性,并通过实例说明了所提方法的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-sample Tests for Functional Data Using Characteristic Functions
In this paper, we consider the two-sample problem for univariate and multivariate functional data. To solve this problem, we use tool of characteristic function and a basis function representation of functional data. We construct test statistics for conformity of distributions based on a weighted distance between characteristic functions of random vectors obtained in basis representation. Different weight functions result in different test statistics, whose distributions are approximated by permutation method. Testing procedures are implemented in the R program and the code is available. Simulation study shows good finite sample properties of proposed methods, while real data example illustrates the application of them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Austrian Journal of Statistics
Austrian Journal of Statistics STATISTICS & PROBABILITY-
CiteScore
1.10
自引率
0.00%
发文量
30
审稿时长
24 weeks
期刊介绍: The Austrian Journal of Statistics is an open-access journal (without any fees) with a long history and is published approximately quarterly by the Austrian Statistical Society. Its general objective is to promote and extend the use of statistical methods in all kind of theoretical and applied disciplines. The Austrian Journal of Statistics is indexed in many data bases, such as Scopus (by Elsevier), Web of Science - ESCI by Clarivate Analytics (formely Thompson & Reuters), DOAJ, Scimago, and many more. The current estimated impact factor (via Publish or Perish) is 0.775, see HERE, or even more indices HERE. Austrian Journal of Statistics ISNN number is 1026597X Original papers and review articles in English will be published in the Austrian Journal of Statistics if judged consistently with these general aims. All papers will be refereed. Special topics sections will appear from time to time. Each section will have as a theme a specialized area of statistical application, theory, or methodology. Technical notes or problems for considerations under Shorter Communications are also invited. A special section is reserved for book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信