{"title":"SPIONs去除重金属及其等温线研究","authors":"","doi":"10.33263/proceedings21.040040","DOIUrl":null,"url":null,"abstract":"The presence of heavy metals is unpreventable in the current era leading to anthropogenic pollution and production of toxicants such as hexavalent chromium [Cr(VI)] to the environment. It is a common, known carcinogen to humans through inhalation as well as ingestion. With proper treatment of the effluents from industrial activity, the concentration of Cr(VI) would be minified and eliminated. Superparamagnetic iron oxide nanoparticles (SPIONs) were once employed to evaluate its absorption efficiency against Cr(VI). The research now centered the concern on Cr(VI) elimination with SPIONS with carbon and used in batch adsorption study with optimized pH, adsorbent, and adsorbent-adsorbate concentrations. The adsorption then evaluated the result by Langmuir, Freundlich, and Temkin isotherms.","PeriodicalId":90703,"journal":{"name":"Proceedings. International Meshing Roundtable","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of SPIONs for Removal of Heavy Metal and its Isotherm Studies\",\"authors\":\"\",\"doi\":\"10.33263/proceedings21.040040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The presence of heavy metals is unpreventable in the current era leading to anthropogenic pollution and production of toxicants such as hexavalent chromium [Cr(VI)] to the environment. It is a common, known carcinogen to humans through inhalation as well as ingestion. With proper treatment of the effluents from industrial activity, the concentration of Cr(VI) would be minified and eliminated. Superparamagnetic iron oxide nanoparticles (SPIONs) were once employed to evaluate its absorption efficiency against Cr(VI). The research now centered the concern on Cr(VI) elimination with SPIONS with carbon and used in batch adsorption study with optimized pH, adsorbent, and adsorbent-adsorbate concentrations. The adsorption then evaluated the result by Langmuir, Freundlich, and Temkin isotherms.\",\"PeriodicalId\":90703,\"journal\":{\"name\":\"Proceedings. International Meshing Roundtable\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Meshing Roundtable\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33263/proceedings21.040040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Meshing Roundtable","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33263/proceedings21.040040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Use of SPIONs for Removal of Heavy Metal and its Isotherm Studies
The presence of heavy metals is unpreventable in the current era leading to anthropogenic pollution and production of toxicants such as hexavalent chromium [Cr(VI)] to the environment. It is a common, known carcinogen to humans through inhalation as well as ingestion. With proper treatment of the effluents from industrial activity, the concentration of Cr(VI) would be minified and eliminated. Superparamagnetic iron oxide nanoparticles (SPIONs) were once employed to evaluate its absorption efficiency against Cr(VI). The research now centered the concern on Cr(VI) elimination with SPIONS with carbon and used in batch adsorption study with optimized pH, adsorbent, and adsorbent-adsorbate concentrations. The adsorption then evaluated the result by Langmuir, Freundlich, and Temkin isotherms.