经验模态分解及其扩展在脑电分析中的应用综述

IF 0.5 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
C. Sweeney-Reed, S. Nasuto, Marcus Fraga Vieira, A. Andrade
{"title":"经验模态分解及其扩展在脑电分析中的应用综述","authors":"C. Sweeney-Reed, S. Nasuto, Marcus Fraga Vieira, A. Andrade","doi":"10.1142/S2424922X18400016","DOIUrl":null,"url":null,"abstract":"Empirical mode decomposition (EMD) provides an adaptive, data-driven approach to time–frequency analysis, yielding components from which local amplitude, phase, and frequency content can be derived...","PeriodicalId":47145,"journal":{"name":"Advances in Data Science and Adaptive Analysis","volume":"5 3 1","pages":"1840001:1-1840001:34"},"PeriodicalIF":0.5000,"publicationDate":"2018-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Empirical Mode Decomposition and its Extensions Applied to EEG Analysis: A Review\",\"authors\":\"C. Sweeney-Reed, S. Nasuto, Marcus Fraga Vieira, A. Andrade\",\"doi\":\"10.1142/S2424922X18400016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Empirical mode decomposition (EMD) provides an adaptive, data-driven approach to time–frequency analysis, yielding components from which local amplitude, phase, and frequency content can be derived...\",\"PeriodicalId\":47145,\"journal\":{\"name\":\"Advances in Data Science and Adaptive Analysis\",\"volume\":\"5 3 1\",\"pages\":\"1840001:1-1840001:34\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Data Science and Adaptive Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S2424922X18400016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Science and Adaptive Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2424922X18400016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 26

摘要

经验模态分解(EMD)提供了一种自适应的、数据驱动的时频分析方法,产生的分量可以从中推导出局部幅度、相位和频率内容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Empirical Mode Decomposition and its Extensions Applied to EEG Analysis: A Review
Empirical mode decomposition (EMD) provides an adaptive, data-driven approach to time–frequency analysis, yielding components from which local amplitude, phase, and frequency content can be derived...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Data Science and Adaptive Analysis
Advances in Data Science and Adaptive Analysis MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
0.00%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信