{"title":"环氧纳米复合材料的耐电晕性能","authors":"G. Iyer, R. Gorur, A. Krivda, V. H. Camara","doi":"10.1109/CEIDP.2011.6232658","DOIUrl":null,"url":null,"abstract":"Epoxy composites with micro, nano and micro + nano silica fillers have been evaluated for their resistance to corona using point plane electrodes. The experiments were conducted for 500 hours and the surface erosion was measured after every 100 hours using a surface profilometer. The results show significant improvement in corona resistance of micro+nanofilled samples and nanofilled samples when compared with the microfilled samples and unfilled materials respectively. The results emphasize the importance of good filler dispersion.","PeriodicalId":6317,"journal":{"name":"2011 Annual Report Conference on Electrical Insulation and Dielectric Phenomena","volume":"50 1","pages":"310-313"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Corona resistance of epoxy nanocomposites\",\"authors\":\"G. Iyer, R. Gorur, A. Krivda, V. H. Camara\",\"doi\":\"10.1109/CEIDP.2011.6232658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epoxy composites with micro, nano and micro + nano silica fillers have been evaluated for their resistance to corona using point plane electrodes. The experiments were conducted for 500 hours and the surface erosion was measured after every 100 hours using a surface profilometer. The results show significant improvement in corona resistance of micro+nanofilled samples and nanofilled samples when compared with the microfilled samples and unfilled materials respectively. The results emphasize the importance of good filler dispersion.\",\"PeriodicalId\":6317,\"journal\":{\"name\":\"2011 Annual Report Conference on Electrical Insulation and Dielectric Phenomena\",\"volume\":\"50 1\",\"pages\":\"310-313\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Annual Report Conference on Electrical Insulation and Dielectric Phenomena\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEIDP.2011.6232658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Annual Report Conference on Electrical Insulation and Dielectric Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEIDP.2011.6232658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Epoxy composites with micro, nano and micro + nano silica fillers have been evaluated for their resistance to corona using point plane electrodes. The experiments were conducted for 500 hours and the surface erosion was measured after every 100 hours using a surface profilometer. The results show significant improvement in corona resistance of micro+nanofilled samples and nanofilled samples when compared with the microfilled samples and unfilled materials respectively. The results emphasize the importance of good filler dispersion.