伪距噪声密度估计的DPM方法研究及对实际数据的评价

N. Viandier, J. Marais, A. Rabaoui, E. Duflos
{"title":"伪距噪声密度估计的DPM方法研究及对实际数据的评价","authors":"N. Viandier, J. Marais, A. Rabaoui, E. Duflos","doi":"10.1109/PLANS.2010.5507234","DOIUrl":null,"url":null,"abstract":"GNSS localization is accurate in clear environment where the pseudorange noise distributions are assumed white- Gaussian. But in constricted environment, e.g. dense urban environment, because of the signal reflections on the surrounding obstacles, this assumption cannot be used and accuracy and continuity of service of GNSS receivers are strongly degraded. To enhance the localization performances, we propose to use Dirichlet Process Mixtures to model the pseudorange error density at each acquisition step. Next, this estimation will be used in Rao-Blackwellized Particle Filter to compute the position. This sequential estimation is adapted when the noise is non-stationary. This approach will be tested on real data acquired by a single frequency receiver.","PeriodicalId":94036,"journal":{"name":"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Studies on DPM for the density estimation of pseudorange noises and evaluations on real data\",\"authors\":\"N. Viandier, J. Marais, A. Rabaoui, E. Duflos\",\"doi\":\"10.1109/PLANS.2010.5507234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GNSS localization is accurate in clear environment where the pseudorange noise distributions are assumed white- Gaussian. But in constricted environment, e.g. dense urban environment, because of the signal reflections on the surrounding obstacles, this assumption cannot be used and accuracy and continuity of service of GNSS receivers are strongly degraded. To enhance the localization performances, we propose to use Dirichlet Process Mixtures to model the pseudorange error density at each acquisition step. Next, this estimation will be used in Rao-Blackwellized Particle Filter to compute the position. This sequential estimation is adapted when the noise is non-stationary. This approach will be tested on real data acquired by a single frequency receiver.\",\"PeriodicalId\":94036,\"journal\":{\"name\":\"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLANS.2010.5507234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS.2010.5507234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

假设伪距噪声分布为白高斯分布,在清晰环境下GNSS定位准确。但在狭窄的环境中,如密集的城市环境中,由于信号对周围障碍物的反射,不能采用这种假设,GNSS接收机的服务精度和连续性受到严重影响。为了提高定位性能,我们提出使用Dirichlet过程混合来模拟每个采集步骤的伪距误差密度。接下来,这个估计将被用于Rao-Blackwellized粒子滤波来计算位置。这种序列估计适用于噪声是非平稳的情况。该方法将在单频接收机采集的实际数据上进行测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Studies on DPM for the density estimation of pseudorange noises and evaluations on real data
GNSS localization is accurate in clear environment where the pseudorange noise distributions are assumed white- Gaussian. But in constricted environment, e.g. dense urban environment, because of the signal reflections on the surrounding obstacles, this assumption cannot be used and accuracy and continuity of service of GNSS receivers are strongly degraded. To enhance the localization performances, we propose to use Dirichlet Process Mixtures to model the pseudorange error density at each acquisition step. Next, this estimation will be used in Rao-Blackwellized Particle Filter to compute the position. This sequential estimation is adapted when the noise is non-stationary. This approach will be tested on real data acquired by a single frequency receiver.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信