{"title":"Wigner测度与Aubry-Mather测度的半经典极限","authors":"D. Gomes, A. Lopes, J. Mohr","doi":"10.1093/AMRX/ABR018","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the asymptotic behavior of the semi-classical limit of Wigner measures defined on the tangent bundle of the one-dimensional torus. In particular we show the convergence of Wigner measures to the Mather measure on the tangent bundle, for energy levels above the minimum of the effective Hamiltonian. The Wigner measures μh we consider are associated to ψh, a distinguished critical solution of the Evans’ quantum action given by ψh = ah e i uh h , with ah(x) = e v∗ h(x)−vh(x) 2h , uh(x) = P ·x+ v ∗ h(x)+vh(x) 2 , and vh, v ∗ h satisfying the equations − h∆vh 2 + 1 2 |P +Dvh | + V = Hh(P ), h∆v∗ h 2 + 1 2 |P +Dv∗ h | + V = Hh(P ), where the constant Hh(P ) is the h effective potential and x is on the torus. L. C. Evans considered limit measures |ψh| in T, when h→ 0, for any n ≥ 1. We consider the limit measures on the phase space T×R, for n = 1, and, in addition, we obtain rigorous asymptotic expansions for the functions vh, and v ∗ h, when h→ 0. (*) Partially supported by CAMGSD/IST through FCT Program POCTI FEDER and by grants PTDC/MAT/114397/2009, UTAustin/MAT/0057/2008, PTDC/EEA-ACR/67020/2006, PTDC/MAT/69635/2006, and PTDC/MAT/72840/2006, and by the bilateral agreement Brazil-Portugal (CAPES-FCT) 248/09. (**) Partially supported by CNPq, PRONEX – Sistemas Dinâmicos, INCT, and beneficiary of CAPES financial support. (***) Partially supported by a CNPq postdoc scholarship. 1 2 DIOGO A. GOMES (*), ARTUR O. LOPES (**), AND JOANA MOHR (***)","PeriodicalId":89656,"journal":{"name":"Applied mathematics research express : AMRX","volume":"176 1","pages":"152-183"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Wigner Measures and the Semi-Classical Limit to the Aubry-Mather Measure\",\"authors\":\"D. Gomes, A. Lopes, J. Mohr\",\"doi\":\"10.1093/AMRX/ABR018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate the asymptotic behavior of the semi-classical limit of Wigner measures defined on the tangent bundle of the one-dimensional torus. In particular we show the convergence of Wigner measures to the Mather measure on the tangent bundle, for energy levels above the minimum of the effective Hamiltonian. The Wigner measures μh we consider are associated to ψh, a distinguished critical solution of the Evans’ quantum action given by ψh = ah e i uh h , with ah(x) = e v∗ h(x)−vh(x) 2h , uh(x) = P ·x+ v ∗ h(x)+vh(x) 2 , and vh, v ∗ h satisfying the equations − h∆vh 2 + 1 2 |P +Dvh | + V = Hh(P ), h∆v∗ h 2 + 1 2 |P +Dv∗ h | + V = Hh(P ), where the constant Hh(P ) is the h effective potential and x is on the torus. L. C. Evans considered limit measures |ψh| in T, when h→ 0, for any n ≥ 1. We consider the limit measures on the phase space T×R, for n = 1, and, in addition, we obtain rigorous asymptotic expansions for the functions vh, and v ∗ h, when h→ 0. (*) Partially supported by CAMGSD/IST through FCT Program POCTI FEDER and by grants PTDC/MAT/114397/2009, UTAustin/MAT/0057/2008, PTDC/EEA-ACR/67020/2006, PTDC/MAT/69635/2006, and PTDC/MAT/72840/2006, and by the bilateral agreement Brazil-Portugal (CAPES-FCT) 248/09. (**) Partially supported by CNPq, PRONEX – Sistemas Dinâmicos, INCT, and beneficiary of CAPES financial support. (***) Partially supported by a CNPq postdoc scholarship. 1 2 DIOGO A. GOMES (*), ARTUR O. LOPES (**), AND JOANA MOHR (***)\",\"PeriodicalId\":89656,\"journal\":{\"name\":\"Applied mathematics research express : AMRX\",\"volume\":\"176 1\",\"pages\":\"152-183\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied mathematics research express : AMRX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/AMRX/ABR018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied mathematics research express : AMRX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/AMRX/ABR018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
摘要
本文研究了一维环面切束上维格纳测度的半经典极限的渐近性。特别地,我们展示了维格纳测度与马瑟测度在切束上的收敛性,对于有效哈密顿量的最小值以上的能级。维格纳措施μh我们认为有关ψh,杰出的关键解决方案埃文斯的量子行为由ψh =啊e我呃h,啊(x) = e v∗h (x)−vh (x) 2 h,嗯(x) = x + v P·h (x)∗+ vh (x) 2, vh, v∗h满足方程−h∆vh 2 + 1 | 2 P +逆向| + v = Hh (P), h∆v∗h 2 + 1 | 2 | P + Dv∗h + v = Hh (P), h常数Hh (P)的有效潜在和x在环面。L. C. Evans考虑了T中,当h→0时,对于任意n≥1的极限测度|ψh|。考虑了n = 1时相空间T×R上的极限测度,并得到了当h→0时函数vh和v * h的严格渐近展开。(*)由CAMGSD/IST通过FCT项目POCTI FEDER、PTDC/MAT/114397/2009、UTAustin/MAT/0057/2008、PTDC/EEA-ACR/67020/2006、PTDC/MAT/69635/2006和PTDC/MAT/72840/2006以及巴西-葡萄牙(CAPES-FCT) 248/09双边协议部分支持。(**)由CNPq、PRONEX - Sistemas din micos、INCT和CAPES资金支持受益人部分支持。(***)获CNPq博士后奖学金部分资助。12 diogo a. gomes (*), arthur o. lopes(**)和joana Mohr (***)
Wigner Measures and the Semi-Classical Limit to the Aubry-Mather Measure
In this paper we investigate the asymptotic behavior of the semi-classical limit of Wigner measures defined on the tangent bundle of the one-dimensional torus. In particular we show the convergence of Wigner measures to the Mather measure on the tangent bundle, for energy levels above the minimum of the effective Hamiltonian. The Wigner measures μh we consider are associated to ψh, a distinguished critical solution of the Evans’ quantum action given by ψh = ah e i uh h , with ah(x) = e v∗ h(x)−vh(x) 2h , uh(x) = P ·x+ v ∗ h(x)+vh(x) 2 , and vh, v ∗ h satisfying the equations − h∆vh 2 + 1 2 |P +Dvh | + V = Hh(P ), h∆v∗ h 2 + 1 2 |P +Dv∗ h | + V = Hh(P ), where the constant Hh(P ) is the h effective potential and x is on the torus. L. C. Evans considered limit measures |ψh| in T, when h→ 0, for any n ≥ 1. We consider the limit measures on the phase space T×R, for n = 1, and, in addition, we obtain rigorous asymptotic expansions for the functions vh, and v ∗ h, when h→ 0. (*) Partially supported by CAMGSD/IST through FCT Program POCTI FEDER and by grants PTDC/MAT/114397/2009, UTAustin/MAT/0057/2008, PTDC/EEA-ACR/67020/2006, PTDC/MAT/69635/2006, and PTDC/MAT/72840/2006, and by the bilateral agreement Brazil-Portugal (CAPES-FCT) 248/09. (**) Partially supported by CNPq, PRONEX – Sistemas Dinâmicos, INCT, and beneficiary of CAPES financial support. (***) Partially supported by a CNPq postdoc scholarship. 1 2 DIOGO A. GOMES (*), ARTUR O. LOPES (**), AND JOANA MOHR (***)