Wigner测度与Aubry-Mather测度的半经典极限

D. Gomes, A. Lopes, J. Mohr
{"title":"Wigner测度与Aubry-Mather测度的半经典极限","authors":"D. Gomes, A. Lopes, J. Mohr","doi":"10.1093/AMRX/ABR018","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the asymptotic behavior of the semi-classical limit of Wigner measures defined on the tangent bundle of the one-dimensional torus. In particular we show the convergence of Wigner measures to the Mather measure on the tangent bundle, for energy levels above the minimum of the effective Hamiltonian. The Wigner measures μh we consider are associated to ψh, a distinguished critical solution of the Evans’ quantum action given by ψh = ah e i uh h , with ah(x) = e v∗ h(x)−vh(x) 2h , uh(x) = P ·x+ v ∗ h(x)+vh(x) 2 , and vh, v ∗ h satisfying the equations − h∆vh 2 + 1 2 |P +Dvh | + V = Hh(P ), h∆v∗ h 2 + 1 2 |P +Dv∗ h | + V = Hh(P ), where the constant Hh(P ) is the h effective potential and x is on the torus. L. C. Evans considered limit measures |ψh| in T, when h→ 0, for any n ≥ 1. We consider the limit measures on the phase space T×R, for n = 1, and, in addition, we obtain rigorous asymptotic expansions for the functions vh, and v ∗ h, when h→ 0. (*) Partially supported by CAMGSD/IST through FCT Program POCTI FEDER and by grants PTDC/MAT/114397/2009, UTAustin/MAT/0057/2008, PTDC/EEA-ACR/67020/2006, PTDC/MAT/69635/2006, and PTDC/MAT/72840/2006, and by the bilateral agreement Brazil-Portugal (CAPES-FCT) 248/09. (**) Partially supported by CNPq, PRONEX – Sistemas Dinâmicos, INCT, and beneficiary of CAPES financial support. (***) Partially supported by a CNPq postdoc scholarship. 1 2 DIOGO A. GOMES (*), ARTUR O. LOPES (**), AND JOANA MOHR (***)","PeriodicalId":89656,"journal":{"name":"Applied mathematics research express : AMRX","volume":"176 1","pages":"152-183"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Wigner Measures and the Semi-Classical Limit to the Aubry-Mather Measure\",\"authors\":\"D. Gomes, A. Lopes, J. Mohr\",\"doi\":\"10.1093/AMRX/ABR018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate the asymptotic behavior of the semi-classical limit of Wigner measures defined on the tangent bundle of the one-dimensional torus. In particular we show the convergence of Wigner measures to the Mather measure on the tangent bundle, for energy levels above the minimum of the effective Hamiltonian. The Wigner measures μh we consider are associated to ψh, a distinguished critical solution of the Evans’ quantum action given by ψh = ah e i uh h , with ah(x) = e v∗ h(x)−vh(x) 2h , uh(x) = P ·x+ v ∗ h(x)+vh(x) 2 , and vh, v ∗ h satisfying the equations − h∆vh 2 + 1 2 |P +Dvh | + V = Hh(P ), h∆v∗ h 2 + 1 2 |P +Dv∗ h | + V = Hh(P ), where the constant Hh(P ) is the h effective potential and x is on the torus. L. C. Evans considered limit measures |ψh| in T, when h→ 0, for any n ≥ 1. We consider the limit measures on the phase space T×R, for n = 1, and, in addition, we obtain rigorous asymptotic expansions for the functions vh, and v ∗ h, when h→ 0. (*) Partially supported by CAMGSD/IST through FCT Program POCTI FEDER and by grants PTDC/MAT/114397/2009, UTAustin/MAT/0057/2008, PTDC/EEA-ACR/67020/2006, PTDC/MAT/69635/2006, and PTDC/MAT/72840/2006, and by the bilateral agreement Brazil-Portugal (CAPES-FCT) 248/09. (**) Partially supported by CNPq, PRONEX – Sistemas Dinâmicos, INCT, and beneficiary of CAPES financial support. (***) Partially supported by a CNPq postdoc scholarship. 1 2 DIOGO A. GOMES (*), ARTUR O. LOPES (**), AND JOANA MOHR (***)\",\"PeriodicalId\":89656,\"journal\":{\"name\":\"Applied mathematics research express : AMRX\",\"volume\":\"176 1\",\"pages\":\"152-183\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied mathematics research express : AMRX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/AMRX/ABR018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied mathematics research express : AMRX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/AMRX/ABR018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文研究了一维环面切束上维格纳测度的半经典极限的渐近性。特别地,我们展示了维格纳测度与马瑟测度在切束上的收敛性,对于有效哈密顿量的最小值以上的能级。维格纳措施μh我们认为有关ψh,杰出的关键解决方案埃文斯的量子行为由ψh =啊e我呃h,啊(x) = e v∗h (x)−vh (x) 2 h,嗯(x) = x + v P·h (x)∗+ vh (x) 2, vh, v∗h满足方程−h∆vh 2 + 1 | 2 P +逆向| + v = Hh (P), h∆v∗h 2 + 1 | 2 | P + Dv∗h + v = Hh (P), h常数Hh (P)的有效潜在和x在环面。L. C. Evans考虑了T中,当h→0时,对于任意n≥1的极限测度|ψh|。考虑了n = 1时相空间T×R上的极限测度,并得到了当h→0时函数vh和v * h的严格渐近展开。(*)由CAMGSD/IST通过FCT项目POCTI FEDER、PTDC/MAT/114397/2009、UTAustin/MAT/0057/2008、PTDC/EEA-ACR/67020/2006、PTDC/MAT/69635/2006和PTDC/MAT/72840/2006以及巴西-葡萄牙(CAPES-FCT) 248/09双边协议部分支持。(**)由CNPq、PRONEX - Sistemas din micos、INCT和CAPES资金支持受益人部分支持。(***)获CNPq博士后奖学金部分资助。12 diogo a. gomes (*), arthur o. lopes(**)和joana Mohr (***)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wigner Measures and the Semi-Classical Limit to the Aubry-Mather Measure
In this paper we investigate the asymptotic behavior of the semi-classical limit of Wigner measures defined on the tangent bundle of the one-dimensional torus. In particular we show the convergence of Wigner measures to the Mather measure on the tangent bundle, for energy levels above the minimum of the effective Hamiltonian. The Wigner measures μh we consider are associated to ψh, a distinguished critical solution of the Evans’ quantum action given by ψh = ah e i uh h , with ah(x) = e v∗ h(x)−vh(x) 2h , uh(x) = P ·x+ v ∗ h(x)+vh(x) 2 , and vh, v ∗ h satisfying the equations − h∆vh 2 + 1 2 |P +Dvh | + V = Hh(P ), h∆v∗ h 2 + 1 2 |P +Dv∗ h | + V = Hh(P ), where the constant Hh(P ) is the h effective potential and x is on the torus. L. C. Evans considered limit measures |ψh| in T, when h→ 0, for any n ≥ 1. We consider the limit measures on the phase space T×R, for n = 1, and, in addition, we obtain rigorous asymptotic expansions for the functions vh, and v ∗ h, when h→ 0. (*) Partially supported by CAMGSD/IST through FCT Program POCTI FEDER and by grants PTDC/MAT/114397/2009, UTAustin/MAT/0057/2008, PTDC/EEA-ACR/67020/2006, PTDC/MAT/69635/2006, and PTDC/MAT/72840/2006, and by the bilateral agreement Brazil-Portugal (CAPES-FCT) 248/09. (**) Partially supported by CNPq, PRONEX – Sistemas Dinâmicos, INCT, and beneficiary of CAPES financial support. (***) Partially supported by a CNPq postdoc scholarship. 1 2 DIOGO A. GOMES (*), ARTUR O. LOPES (**), AND JOANA MOHR (***)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信