{"title":"基于适体体的持续体内治疗药物监测电化学传感植入物","authors":"Jun-Chau Chien, P. Mage, H. Soh, A. Arbabian","doi":"10.23919/VLSIC.2019.8777991","DOIUrl":null,"url":null,"abstract":"This work presents the first fully wireless implant system capable of continuous monitoring of therapeutic drugs in vivo. Electrochemical readout using square-wave voltammetry (SWV) is employed to measure the changes in the drug concentration using redox-labeled structure-switching aptamers. Ultrasound (US) powering and data transmission are employed in the implant for miniaturization, large tissue depth, and high available power. We demonstrate continuous and real-time detection in the human whole blood. Implemented in 65-nm CMOS, the entire implant system operates at 6.64 mW, and measures 140mm3 and 0.24g.","PeriodicalId":6707,"journal":{"name":"2019 Symposium on VLSI Circuits","volume":"21 1","pages":"C312-C313"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"An Aptamer-based Electrochemical-Sensing Implant for Continuous Therapeutic- Drug Monitoring in vivo\",\"authors\":\"Jun-Chau Chien, P. Mage, H. Soh, A. Arbabian\",\"doi\":\"10.23919/VLSIC.2019.8777991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents the first fully wireless implant system capable of continuous monitoring of therapeutic drugs in vivo. Electrochemical readout using square-wave voltammetry (SWV) is employed to measure the changes in the drug concentration using redox-labeled structure-switching aptamers. Ultrasound (US) powering and data transmission are employed in the implant for miniaturization, large tissue depth, and high available power. We demonstrate continuous and real-time detection in the human whole blood. Implemented in 65-nm CMOS, the entire implant system operates at 6.64 mW, and measures 140mm3 and 0.24g.\",\"PeriodicalId\":6707,\"journal\":{\"name\":\"2019 Symposium on VLSI Circuits\",\"volume\":\"21 1\",\"pages\":\"C312-C313\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Symposium on VLSI Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/VLSIC.2019.8777991\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIC.2019.8777991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Aptamer-based Electrochemical-Sensing Implant for Continuous Therapeutic- Drug Monitoring in vivo
This work presents the first fully wireless implant system capable of continuous monitoring of therapeutic drugs in vivo. Electrochemical readout using square-wave voltammetry (SWV) is employed to measure the changes in the drug concentration using redox-labeled structure-switching aptamers. Ultrasound (US) powering and data transmission are employed in the implant for miniaturization, large tissue depth, and high available power. We demonstrate continuous and real-time detection in the human whole blood. Implemented in 65-nm CMOS, the entire implant system operates at 6.64 mW, and measures 140mm3 and 0.24g.