M. Martínez-Hernández, Xabier Sandúa, P. J. Rivero, J. Goicoechea, F. Arregui
{"title":"基于嵌入聚合物基体的银和金纳米粒子LSPR的Hg2+检测光纤传感器","authors":"M. Martínez-Hernández, Xabier Sandúa, P. J. Rivero, J. Goicoechea, F. Arregui","doi":"10.3390/csac2021-10633","DOIUrl":null,"url":null,"abstract":"In this work, an optical fiber sensor based on the localized surface plasmon resonance (LSPR) phenomenon is presented as a powerful tool for the detection of heavy metals (Hg2+). The resultant sensing film was fabricated using a nanofabrication process, known as layer-by-layer embedding (LbL-E) deposition technique. In this sense, both silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) were synthesized using a synthetic chemical protocol as a function of a strict control of three main parameters: polyelectrolyte concentration, loading agent, and reducing agent. The use of metallic nanostructures as sensing materials is of great interest because well-located absorption peaks associated with their LSPR are obtained at 420 nm (AgNPs) and 530 nm (AuNPs). Both plasmonic peaks provide a stable real-time reference that can be extracted from the spectral response of the optical fiber sensor, giving a reliable monitoring of the Hg2+ concentration.","PeriodicalId":9815,"journal":{"name":"Chemistry Proceedings","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Optical Fiber Sensor for Hg2+ Detection Based on the LSPR of Silver and Gold Nanoparticles Embedded in a Polymeric Matrix as an Effective Sensing Material\",\"authors\":\"M. Martínez-Hernández, Xabier Sandúa, P. J. Rivero, J. Goicoechea, F. Arregui\",\"doi\":\"10.3390/csac2021-10633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, an optical fiber sensor based on the localized surface plasmon resonance (LSPR) phenomenon is presented as a powerful tool for the detection of heavy metals (Hg2+). The resultant sensing film was fabricated using a nanofabrication process, known as layer-by-layer embedding (LbL-E) deposition technique. In this sense, both silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) were synthesized using a synthetic chemical protocol as a function of a strict control of three main parameters: polyelectrolyte concentration, loading agent, and reducing agent. The use of metallic nanostructures as sensing materials is of great interest because well-located absorption peaks associated with their LSPR are obtained at 420 nm (AgNPs) and 530 nm (AuNPs). Both plasmonic peaks provide a stable real-time reference that can be extracted from the spectral response of the optical fiber sensor, giving a reliable monitoring of the Hg2+ concentration.\",\"PeriodicalId\":9815,\"journal\":{\"name\":\"Chemistry Proceedings\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/csac2021-10633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/csac2021-10633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Optical Fiber Sensor for Hg2+ Detection Based on the LSPR of Silver and Gold Nanoparticles Embedded in a Polymeric Matrix as an Effective Sensing Material
In this work, an optical fiber sensor based on the localized surface plasmon resonance (LSPR) phenomenon is presented as a powerful tool for the detection of heavy metals (Hg2+). The resultant sensing film was fabricated using a nanofabrication process, known as layer-by-layer embedding (LbL-E) deposition technique. In this sense, both silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) were synthesized using a synthetic chemical protocol as a function of a strict control of three main parameters: polyelectrolyte concentration, loading agent, and reducing agent. The use of metallic nanostructures as sensing materials is of great interest because well-located absorption peaks associated with their LSPR are obtained at 420 nm (AgNPs) and 530 nm (AuNPs). Both plasmonic peaks provide a stable real-time reference that can be extracted from the spectral response of the optical fiber sensor, giving a reliable monitoring of the Hg2+ concentration.