一维量子三体问题束缚态的软等几何分析

Danyang Li, Quanling Deng
{"title":"一维量子三体问题束缚态的软等几何分析","authors":"Danyang Li, Quanling Deng","doi":"10.48550/arXiv.2210.06832","DOIUrl":null,"url":null,"abstract":"The study of quantum three-body problems has been centered on low-energy states that rely on accurate numerical approximation. Recently, isogeometric analysis (IGA) has been adopted to solve the problem as an alternative but more robust (with respect to atom mass ratios) method that outperforms the classical Born-Oppenheimer (BO) approximation. In this paper, we focus on the performance of IGA and apply the recently-developed softIGA to reduce the spectral errors of the low-energy bound states. The main idea is to add high-order derivative-jump terms with a penalty parameter to the IGA bilinear forms. With an optimal choice of the penalty parameter, we observe eigenvalue error superconvergence. We focus on linear (finite elements) and quadratic elements and demonstrate the outperformance of softIGA over IGA through a variety of examples including both two- and three-body problems in 1D.","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"3 1","pages":"102032"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Soft isogeometric analysis of the Bound States of a Quantum Three-Body Problem in 1D\",\"authors\":\"Danyang Li, Quanling Deng\",\"doi\":\"10.48550/arXiv.2210.06832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of quantum three-body problems has been centered on low-energy states that rely on accurate numerical approximation. Recently, isogeometric analysis (IGA) has been adopted to solve the problem as an alternative but more robust (with respect to atom mass ratios) method that outperforms the classical Born-Oppenheimer (BO) approximation. In this paper, we focus on the performance of IGA and apply the recently-developed softIGA to reduce the spectral errors of the low-energy bound states. The main idea is to add high-order derivative-jump terms with a penalty parameter to the IGA bilinear forms. With an optimal choice of the penalty parameter, we observe eigenvalue error superconvergence. We focus on linear (finite elements) and quadratic elements and demonstrate the outperformance of softIGA over IGA through a variety of examples including both two- and three-body problems in 1D.\",\"PeriodicalId\":14601,\"journal\":{\"name\":\"J. Comput. Sci.\",\"volume\":\"3 1\",\"pages\":\"102032\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2210.06832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.06832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

量子三体问题的研究主要集中在依赖精确数值近似的低能态上。最近,等几何分析(IGA)被采用来解决这个问题,作为一种替代方法,但更健壮(关于原子质量比),优于经典的Born-Oppenheimer (BO)近似。在本文中,我们重点研究了IGA的性能,并应用最新开发的软件tiga来降低低能束缚态的光谱误差。其主要思想是在IGA双线性形式中加入带有惩罚参数的高阶导数跳跃项。通过对惩罚参数的最优选择,我们观察到特征值误差超收敛。我们专注于线性(有限元)和二次元,并通过包括一维二体和三体问题在内的各种示例展示了softtiga优于IGA的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soft isogeometric analysis of the Bound States of a Quantum Three-Body Problem in 1D
The study of quantum three-body problems has been centered on low-energy states that rely on accurate numerical approximation. Recently, isogeometric analysis (IGA) has been adopted to solve the problem as an alternative but more robust (with respect to atom mass ratios) method that outperforms the classical Born-Oppenheimer (BO) approximation. In this paper, we focus on the performance of IGA and apply the recently-developed softIGA to reduce the spectral errors of the low-energy bound states. The main idea is to add high-order derivative-jump terms with a penalty parameter to the IGA bilinear forms. With an optimal choice of the penalty parameter, we observe eigenvalue error superconvergence. We focus on linear (finite elements) and quadratic elements and demonstrate the outperformance of softIGA over IGA through a variety of examples including both two- and three-body problems in 1D.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信