铅铋合金的电解加工

A. A. Korolev
{"title":"铅铋合金的电解加工","authors":"A. A. Korolev","doi":"10.17516/1999-494x-0362","DOIUrl":null,"url":null,"abstract":"Metal bismuth is mainly produced as a by-product in the production of lead, tungsten, copper, silver, gold, tin and zinc. Approximately 90 % of all extracted bismuth is obtained from lead, copper and other concentrates. The main source of bismuth is lead concentrates obtained during the processing of lead, as well as lead-zinc and other polymetallic ores. During the processing of these concentrates, bismuth almost completely enters the rough lead, from which it is removed during its refining. The most common technologies for the recovery of bismuth from lead ingots are the Kroll-Betterton process and the Betts electrolytic process. During the electrolysis of the Bi-Pb alloy, the separation of three products has been established, they are anode and cathode alloys, as well as salt melt. The complexity of pyroelectrometallurgical processing of a bismuth-poor alloy with the production of rough bismuth in one stage is confirmed, which necessitates the use of two stages of electrolysis. At the first stage of electrolysis, the anode product‑1 (17.3–48.5 % of the initial Pb-Bi alloy) of the composition has been isolated,%: 16.6–48.4 Bi; 51.4–83.2 Pb; operational extraction,%: 92.2–96.6 Bi; 9.8–44.4 Pb; main phases Bi0,3Pb0,7 and Bi0,95Pb0,05. A six-fold bismuth enrichment is achieved in the anode product. At the second stage of electrolysis of the previously isolated anode product of the composition,%: 26.7 Bi; 73.1 Pb; 0.13 Cu; 0.08 Zn, the anode product‑2 (28.1 % of the enriched Pb-Bi alloy) of the composition has been separated,%: 93.6 Bi; 4.1 Pb; 0.086 Ag; 0.0066 As; 0.006 Sb; 0.0013 Cu; 0.001 Sn; 0.0014 Zn; stage extraction,%: 98.6 Bi; 1.6 Pb; main phase Bi0,95Pb0,05. As a result of pyroelectrometallurgical processing of a Pb-Bi alloy (~10 % Bi) with anode polarization in two stages, an anode product (8.7 % of the initial alloy) of the composition has been isolated,%: ≥ 93.6 Bi; 4.1 Pb; extraction from the initial alloy,%: 93.0 Bi; 0.4 Pb has been obtained. The following modes are recommended for pyroelectrometallurgical processing in two stages of Pb-Bi alloy: process temperature 550–600 °C; anode current density: 0.5 A/cm2 at the first stage; 0.2–0.3 A/cm2 at the second stage; cathode current density: 1.5 A/cm2 at the first stage; 1.0 A/cm2 at the second stage; operating voltage on the tub: at the first stage 8–12 V; at the second stage 5–8 V; the composition of the electrolyte at both stages,%: 7 NaCl; 35 KCl; 18 PbCl2; 40 ZnCl2; the amount of electrolyte output for processing: at the first stage – 10 % of the mass of the Pb-Bi alloy after alkaline treatment; at the second stage – 10 % of the mass of the anode product of the first stage","PeriodicalId":17206,"journal":{"name":"Journal of Siberian Federal University: Engineering & Technologies","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Electrolytic Processing of Pb-Bi Alloy\",\"authors\":\"A. A. Korolev\",\"doi\":\"10.17516/1999-494x-0362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal bismuth is mainly produced as a by-product in the production of lead, tungsten, copper, silver, gold, tin and zinc. Approximately 90 % of all extracted bismuth is obtained from lead, copper and other concentrates. The main source of bismuth is lead concentrates obtained during the processing of lead, as well as lead-zinc and other polymetallic ores. During the processing of these concentrates, bismuth almost completely enters the rough lead, from which it is removed during its refining. The most common technologies for the recovery of bismuth from lead ingots are the Kroll-Betterton process and the Betts electrolytic process. During the electrolysis of the Bi-Pb alloy, the separation of three products has been established, they are anode and cathode alloys, as well as salt melt. The complexity of pyroelectrometallurgical processing of a bismuth-poor alloy with the production of rough bismuth in one stage is confirmed, which necessitates the use of two stages of electrolysis. At the first stage of electrolysis, the anode product‑1 (17.3–48.5 % of the initial Pb-Bi alloy) of the composition has been isolated,%: 16.6–48.4 Bi; 51.4–83.2 Pb; operational extraction,%: 92.2–96.6 Bi; 9.8–44.4 Pb; main phases Bi0,3Pb0,7 and Bi0,95Pb0,05. A six-fold bismuth enrichment is achieved in the anode product. At the second stage of electrolysis of the previously isolated anode product of the composition,%: 26.7 Bi; 73.1 Pb; 0.13 Cu; 0.08 Zn, the anode product‑2 (28.1 % of the enriched Pb-Bi alloy) of the composition has been separated,%: 93.6 Bi; 4.1 Pb; 0.086 Ag; 0.0066 As; 0.006 Sb; 0.0013 Cu; 0.001 Sn; 0.0014 Zn; stage extraction,%: 98.6 Bi; 1.6 Pb; main phase Bi0,95Pb0,05. As a result of pyroelectrometallurgical processing of a Pb-Bi alloy (~10 % Bi) with anode polarization in two stages, an anode product (8.7 % of the initial alloy) of the composition has been isolated,%: ≥ 93.6 Bi; 4.1 Pb; extraction from the initial alloy,%: 93.0 Bi; 0.4 Pb has been obtained. The following modes are recommended for pyroelectrometallurgical processing in two stages of Pb-Bi alloy: process temperature 550–600 °C; anode current density: 0.5 A/cm2 at the first stage; 0.2–0.3 A/cm2 at the second stage; cathode current density: 1.5 A/cm2 at the first stage; 1.0 A/cm2 at the second stage; operating voltage on the tub: at the first stage 8–12 V; at the second stage 5–8 V; the composition of the electrolyte at both stages,%: 7 NaCl; 35 KCl; 18 PbCl2; 40 ZnCl2; the amount of electrolyte output for processing: at the first stage – 10 % of the mass of the Pb-Bi alloy after alkaline treatment; at the second stage – 10 % of the mass of the anode product of the first stage\",\"PeriodicalId\":17206,\"journal\":{\"name\":\"Journal of Siberian Federal University: Engineering & Technologies\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Siberian Federal University: Engineering & Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17516/1999-494x-0362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University: Engineering & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1999-494x-0362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

金属铋主要是铅、钨、铜、银、金、锡和锌生产过程中的副产品。大约90%的铋是从铅、铜和其他精矿中获得的。铋的主要来源是铅加工过程中获得的铅精矿,以及铅锌和其他多金属矿石。在这些精矿的加工过程中,铋几乎完全进入粗铅,在精炼过程中从粗铅中除去。从铅锭中回收铋最常用的技术是Kroll-Betterton法和Betts电解法。在电解过程中,建立了三种产物的分离,即阳极、阴极合金和盐液。证实了贫铋合金一段制得粗铋的热电冶金工艺的复杂性,需要采用两段电解。在电解的第一阶段,阳极产物- 1(17.3 - 48.5%的初始Pb-Bi合金)的组成已被分离,%:16.6-48.4 Bi;51.4 - -83.2 Pb;操作萃取,%:92.2-96.6 Bi;9.8 - -44.4 Pb;主要相Bi0,3Pb0,7和Bi0,95Pb0,05。在阳极产物中实现了6倍的铋富集。在电解的第二阶段,先前隔离的阳极产物的组成,%:26.7 Bi;73.1 Pb;0.13铜;0.08 Zn,阳极产物‑2(富集Pb-Bi合金的28.1%)的成分已分离,%:93.6 Bi;4.1 Pb;0.086 Ag);0.0066;0.006某人;0.0013铜;0.001锡;0.0014锌;阶段萃取,%:98.6 Bi;1.6 Pb;主相Bi0,95Pb0,05;对一种Pb-Bi合金(~ 10% Bi)进行了两段阳极极化热电冶金处理,分离出了该成分的阳极产物(占初始合金的8.7%),%:≥93.6 Bi;4.1 Pb;从初始合金中萃取,%:93.0 Bi;得到了0.4 Pb。Pb-Bi合金两个阶段的热电冶金加工推荐采用以下模式:工艺温度550-600℃;阳极电流密度:第一级0.5 A/cm2;第二级0.2-0.3 A/cm2;阴极电流密度:第一级1.5 A/cm2;第二级1.0 A/cm2;盆上工作电压:第一级8 - 12v;第二级5 ~ 8v;两段电解液的组成,%:7 NaCl;35氯化钾;18 PbCl2;40优化选取;加工用电解液的输出量:第一阶段-碱性处理后铅铋合金质量的10%;在第二级-第一级阳极产品质量的10%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrolytic Processing of Pb-Bi Alloy
Metal bismuth is mainly produced as a by-product in the production of lead, tungsten, copper, silver, gold, tin and zinc. Approximately 90 % of all extracted bismuth is obtained from lead, copper and other concentrates. The main source of bismuth is lead concentrates obtained during the processing of lead, as well as lead-zinc and other polymetallic ores. During the processing of these concentrates, bismuth almost completely enters the rough lead, from which it is removed during its refining. The most common technologies for the recovery of bismuth from lead ingots are the Kroll-Betterton process and the Betts electrolytic process. During the electrolysis of the Bi-Pb alloy, the separation of three products has been established, they are anode and cathode alloys, as well as salt melt. The complexity of pyroelectrometallurgical processing of a bismuth-poor alloy with the production of rough bismuth in one stage is confirmed, which necessitates the use of two stages of electrolysis. At the first stage of electrolysis, the anode product‑1 (17.3–48.5 % of the initial Pb-Bi alloy) of the composition has been isolated,%: 16.6–48.4 Bi; 51.4–83.2 Pb; operational extraction,%: 92.2–96.6 Bi; 9.8–44.4 Pb; main phases Bi0,3Pb0,7 and Bi0,95Pb0,05. A six-fold bismuth enrichment is achieved in the anode product. At the second stage of electrolysis of the previously isolated anode product of the composition,%: 26.7 Bi; 73.1 Pb; 0.13 Cu; 0.08 Zn, the anode product‑2 (28.1 % of the enriched Pb-Bi alloy) of the composition has been separated,%: 93.6 Bi; 4.1 Pb; 0.086 Ag; 0.0066 As; 0.006 Sb; 0.0013 Cu; 0.001 Sn; 0.0014 Zn; stage extraction,%: 98.6 Bi; 1.6 Pb; main phase Bi0,95Pb0,05. As a result of pyroelectrometallurgical processing of a Pb-Bi alloy (~10 % Bi) with anode polarization in two stages, an anode product (8.7 % of the initial alloy) of the composition has been isolated,%: ≥ 93.6 Bi; 4.1 Pb; extraction from the initial alloy,%: 93.0 Bi; 0.4 Pb has been obtained. The following modes are recommended for pyroelectrometallurgical processing in two stages of Pb-Bi alloy: process temperature 550–600 °C; anode current density: 0.5 A/cm2 at the first stage; 0.2–0.3 A/cm2 at the second stage; cathode current density: 1.5 A/cm2 at the first stage; 1.0 A/cm2 at the second stage; operating voltage on the tub: at the first stage 8–12 V; at the second stage 5–8 V; the composition of the electrolyte at both stages,%: 7 NaCl; 35 KCl; 18 PbCl2; 40 ZnCl2; the amount of electrolyte output for processing: at the first stage – 10 % of the mass of the Pb-Bi alloy after alkaline treatment; at the second stage – 10 % of the mass of the anode product of the first stage
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信