多无线电无线传感器网络:无线电激活的节能解决方案

Aravind M. Canthadai, S. Radhakrishnan, V. Sarangan
{"title":"多无线电无线传感器网络:无线电激活的节能解决方案","authors":"Aravind M. Canthadai, S. Radhakrishnan, V. Sarangan","doi":"10.1109/GLOCOM.2010.5683413","DOIUrl":null,"url":null,"abstract":"Consider a wireless sensor network where each node has $K$ radios$r_1,r_2,\\cdots,r_K$ such that the one hop reachability distance(resp. energy expended) of (resp. by) radio $r_i$ is greater than that of $r_j$, $1 \\leq j < i \\leq K$. Given such a network, the problem of energy efficient radio activation is to minimize the total energy spent by the active radios across all nodes in order to maintain a connected network. We show that this problem is NP-Hard. We initially pay attention to the case of $K=2$ and discuss a basic version of the radio activation problem in such networks. We propose approximation methodologies for solving this problem. Our analytical and experimental studies reveal that the greedy algorithm and the minimum spanning tree solution have the best {\\em worst case} performance while the greedy algorithm has the best {\\em average case} performance. To the best of our knowledge, this is one of the first few works to focus on %deterministic solutions for optimal radio activation in generic multi-radio wireless networks.","PeriodicalId":6448,"journal":{"name":"2010 IEEE Global Telecommunications Conference GLOBECOM 2010","volume":"107 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Multi-Radio Wireless Sensor Networks: Energy Efficient Solutions for Radio Activation\",\"authors\":\"Aravind M. Canthadai, S. Radhakrishnan, V. Sarangan\",\"doi\":\"10.1109/GLOCOM.2010.5683413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider a wireless sensor network where each node has $K$ radios$r_1,r_2,\\\\cdots,r_K$ such that the one hop reachability distance(resp. energy expended) of (resp. by) radio $r_i$ is greater than that of $r_j$, $1 \\\\leq j < i \\\\leq K$. Given such a network, the problem of energy efficient radio activation is to minimize the total energy spent by the active radios across all nodes in order to maintain a connected network. We show that this problem is NP-Hard. We initially pay attention to the case of $K=2$ and discuss a basic version of the radio activation problem in such networks. We propose approximation methodologies for solving this problem. Our analytical and experimental studies reveal that the greedy algorithm and the minimum spanning tree solution have the best {\\\\em worst case} performance while the greedy algorithm has the best {\\\\em average case} performance. To the best of our knowledge, this is one of the first few works to focus on %deterministic solutions for optimal radio activation in generic multi-radio wireless networks.\",\"PeriodicalId\":6448,\"journal\":{\"name\":\"2010 IEEE Global Telecommunications Conference GLOBECOM 2010\",\"volume\":\"107 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Global Telecommunications Conference GLOBECOM 2010\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOM.2010.5683413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Global Telecommunications Conference GLOBECOM 2010","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.2010.5683413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

考虑一个无线传感器网络,其中每个节点都有$K$无线电$r_1,r_2,\cdots,r_K$,使得一跳可达距离(respp。(消耗的)能量通过)无线电$r_i$比$r_j$、$1 \leq j < i \leq K$大。给定这样一个网络,节能无线电激活的问题是最小化所有节点上活动无线电所消耗的总能量,以维持一个连接的网络。我们证明这个问题是np困难的。我们首先关注$K=2$的情况,并讨论了这种网络中无线电激活问题的基本版本。我们提出近似方法来解决这个问题。我们的分析和实验研究表明,贪心算法和最小生成树解具有最佳的{\em最差情况}性能,而贪心算法具有最佳的{\em平均情况}性能。据我们所知,这是最早需要关注的几个作品之一 %deterministic solutions for optimal radio activation in generic multi-radio wireless networks.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Radio Wireless Sensor Networks: Energy Efficient Solutions for Radio Activation
Consider a wireless sensor network where each node has $K$ radios$r_1,r_2,\cdots,r_K$ such that the one hop reachability distance(resp. energy expended) of (resp. by) radio $r_i$ is greater than that of $r_j$, $1 \leq j < i \leq K$. Given such a network, the problem of energy efficient radio activation is to minimize the total energy spent by the active radios across all nodes in order to maintain a connected network. We show that this problem is NP-Hard. We initially pay attention to the case of $K=2$ and discuss a basic version of the radio activation problem in such networks. We propose approximation methodologies for solving this problem. Our analytical and experimental studies reveal that the greedy algorithm and the minimum spanning tree solution have the best {\em worst case} performance while the greedy algorithm has the best {\em average case} performance. To the best of our knowledge, this is one of the first few works to focus on %deterministic solutions for optimal radio activation in generic multi-radio wireless networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信