Paolo José Cesare Biselli , Julia Benini Kohler , Renato Righetti , Iolanda de Fátima Lopes Calvo Tibério , Mílton de Arruda Martins , Fernanda Degobbi Tenorio Quirino dos Santos Lopes
{"title":"动物模型的呼吸力学分析:它在理解肺气肿和哮喘的肺行为中的应用","authors":"Paolo José Cesare Biselli , Julia Benini Kohler , Renato Righetti , Iolanda de Fátima Lopes Calvo Tibério , Mílton de Arruda Martins , Fernanda Degobbi Tenorio Quirino dos Santos Lopes","doi":"10.1016/j.ddmod.2019.10.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>Respiratory mechanics<span> assessment in animal models of </span></span>respiratory diseases<span> is considered a reliable tool to understand how structural changes impact lung function. Mathematical models, such as the equation of motion and the constant-phase model are used to describe the properties of the respiratory system. The equation of motion is valued because it is relatively simple to apply and describes the respiratory systems with few parameters. The constant-phase model is more complex but provides more detailed information about different lung compartments. In this review, we summarize how respiratory mechanics have been used to describe lung behavior as well as how these measurements reflect the progression of structural changes caused by emphysema and asthma in animal models.</span></p></div>","PeriodicalId":39774,"journal":{"name":"Drug Discovery Today: Disease Models","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ddmod.2019.10.001","citationCount":"2","resultStr":"{\"title\":\"Analysis of respiratory mechanics in animal models: Its use in understanding lung behavior in emphysema and asthma\",\"authors\":\"Paolo José Cesare Biselli , Julia Benini Kohler , Renato Righetti , Iolanda de Fátima Lopes Calvo Tibério , Mílton de Arruda Martins , Fernanda Degobbi Tenorio Quirino dos Santos Lopes\",\"doi\":\"10.1016/j.ddmod.2019.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Respiratory mechanics<span> assessment in animal models of </span></span>respiratory diseases<span> is considered a reliable tool to understand how structural changes impact lung function. Mathematical models, such as the equation of motion and the constant-phase model are used to describe the properties of the respiratory system. The equation of motion is valued because it is relatively simple to apply and describes the respiratory systems with few parameters. The constant-phase model is more complex but provides more detailed information about different lung compartments. In this review, we summarize how respiratory mechanics have been used to describe lung behavior as well as how these measurements reflect the progression of structural changes caused by emphysema and asthma in animal models.</span></p></div>\",\"PeriodicalId\":39774,\"journal\":{\"name\":\"Drug Discovery Today: Disease Models\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ddmod.2019.10.001\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Discovery Today: Disease Models\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1740675719300131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today: Disease Models","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1740675719300131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Analysis of respiratory mechanics in animal models: Its use in understanding lung behavior in emphysema and asthma
Respiratory mechanics assessment in animal models of respiratory diseases is considered a reliable tool to understand how structural changes impact lung function. Mathematical models, such as the equation of motion and the constant-phase model are used to describe the properties of the respiratory system. The equation of motion is valued because it is relatively simple to apply and describes the respiratory systems with few parameters. The constant-phase model is more complex but provides more detailed information about different lung compartments. In this review, we summarize how respiratory mechanics have been used to describe lung behavior as well as how these measurements reflect the progression of structural changes caused by emphysema and asthma in animal models.
期刊介绍:
Drug Discovery Today: Disease Models discusses the non-human experimental models through which inference is drawn regarding the molecular aetiology and pathogenesis of human disease. It provides critical analysis and evaluation of which models can genuinely inform the research community about the direct process of human disease, those which may have value in basic toxicology, and those which are simply designed for effective expression and raw characterisation.