{"title":"用施密特分解分析连续变量量子系统中的纠缠","authors":"A. Bogdanov, Y. Bogdanov, K. Valiev","doi":"10.1117/12.683105","DOIUrl":null,"url":null,"abstract":"We investigate the procedure of Schmidt modes extraction in systems with continuous variables. An algorithm based on singular value matrix decomposition is applied to the study of entanglement in an \"atom-photon\" system with spontaneous radiation. Also, this algorithm is applied to the study of a bi-photon system with spontaneous parametric down conversion with type-II phase matching for broadband pump. We demonstrate that dynamic properties of entangled states in an atom-photon system with spontaneous radiation are defined by a parameter equal to the product of the fine structure constant and the atom-electron mass ratio. We then consider the evolution of the system during radiation and show that the atomic and photonic degrees of freedom are entangling for the times of the same order of magnitude as the excited state life-time. Then the degrees of freedom are de-entangling and asymptotically approach to the level of small residual entanglement that is caused by momentum dispersion of the initial atomic packet. Finally, we investigate the process of coherence loss between modes in type-II parametric down conversion that is caused by non-linear crystal properties.","PeriodicalId":90714,"journal":{"name":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2006-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of entanglement in quantum systems with continuous variables by means of Schmidt decomposition\",\"authors\":\"A. Bogdanov, Y. Bogdanov, K. Valiev\",\"doi\":\"10.1117/12.683105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the procedure of Schmidt modes extraction in systems with continuous variables. An algorithm based on singular value matrix decomposition is applied to the study of entanglement in an \\\"atom-photon\\\" system with spontaneous radiation. Also, this algorithm is applied to the study of a bi-photon system with spontaneous parametric down conversion with type-II phase matching for broadband pump. We demonstrate that dynamic properties of entangled states in an atom-photon system with spontaneous radiation are defined by a parameter equal to the product of the fine structure constant and the atom-electron mass ratio. We then consider the evolution of the system during radiation and show that the atomic and photonic degrees of freedom are entangling for the times of the same order of magnitude as the excited state life-time. Then the degrees of freedom are de-entangling and asymptotically approach to the level of small residual entanglement that is caused by momentum dispersion of the initial atomic packet. Finally, we investigate the process of coherence loss between modes in type-II parametric down conversion that is caused by non-linear crystal properties.\",\"PeriodicalId\":90714,\"journal\":{\"name\":\"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.683105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.683105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of entanglement in quantum systems with continuous variables by means of Schmidt decomposition
We investigate the procedure of Schmidt modes extraction in systems with continuous variables. An algorithm based on singular value matrix decomposition is applied to the study of entanglement in an "atom-photon" system with spontaneous radiation. Also, this algorithm is applied to the study of a bi-photon system with spontaneous parametric down conversion with type-II phase matching for broadband pump. We demonstrate that dynamic properties of entangled states in an atom-photon system with spontaneous radiation are defined by a parameter equal to the product of the fine structure constant and the atom-electron mass ratio. We then consider the evolution of the system during radiation and show that the atomic and photonic degrees of freedom are entangling for the times of the same order of magnitude as the excited state life-time. Then the degrees of freedom are de-entangling and asymptotically approach to the level of small residual entanglement that is caused by momentum dispersion of the initial atomic packet. Finally, we investigate the process of coherence loss between modes in type-II parametric down conversion that is caused by non-linear crystal properties.