关于算术环的注解

IF 0.5 2区 数学 Q3 MATHEMATICS
Majid M. Ali
{"title":"关于算术环的注解","authors":"Majid M. Ali","doi":"10.12988/ija.2021.91575","DOIUrl":null,"url":null,"abstract":"ΦA,B := {I | I is non-zero finitely generated, A ⊆ I, I + B = R} . He showed, [3, Theorem 5], that M is the smallest element in ΦA,B if and only if the following conditions are satisfied: ( i) A ⊆ M , ( ii) M + B = R and ( iii) if S is a non-zero a finitely generated ideal in R such that AM−1 ⊆ S and S + B = R, then R = S. He also proved, [3, Corollary to Theorem 4], that the smallest element always exists if R is a Dedekind domain. In this short note we generalize these two results to arithmetical rings. Recall that a ring R is called an arithmetical ring if every finitely generated ideal in R is multiplication. An ideal A in R is multiplication if for every ideal B ⊆ A, there exists an ideal C in R such that B = CA, [2]. Note that C ⊆ [B : A], and hence B = CA ⊆ [B : A]A ⊆ B,","PeriodicalId":13756,"journal":{"name":"International Journal of Algebra and Computation","volume":"33 5 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A remark on arithmetical rings\",\"authors\":\"Majid M. Ali\",\"doi\":\"10.12988/ija.2021.91575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ΦA,B := {I | I is non-zero finitely generated, A ⊆ I, I + B = R} . He showed, [3, Theorem 5], that M is the smallest element in ΦA,B if and only if the following conditions are satisfied: ( i) A ⊆ M , ( ii) M + B = R and ( iii) if S is a non-zero a finitely generated ideal in R such that AM−1 ⊆ S and S + B = R, then R = S. He also proved, [3, Corollary to Theorem 4], that the smallest element always exists if R is a Dedekind domain. In this short note we generalize these two results to arithmetical rings. Recall that a ring R is called an arithmetical ring if every finitely generated ideal in R is multiplication. An ideal A in R is multiplication if for every ideal B ⊆ A, there exists an ideal C in R such that B = CA, [2]. Note that C ⊆ [B : A], and hence B = CA ⊆ [B : A]A ⊆ B,\",\"PeriodicalId\":13756,\"journal\":{\"name\":\"International Journal of Algebra and Computation\",\"volume\":\"33 5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Algebra and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.12988/ija.2021.91575\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Algebra and Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12988/ija.2021.91575","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

ΦA,B:= {I | I是非零有限生成的,A≤I, I + B = R}。他[3,定理5]表明,M是最小的元素在ΦB当且仅当满足以下条件:(i)⊆M, (ii) M + B = R和S (iii)是一个非零的有限生成理想的R这样−1⊆S, S + B = R, R = S .他还证明,3,推论定理4,最小的元素总是存在如果R是一个绰金环。在这个简短的笔记中,我们将这两个结果推广到算术环。回想一下,如果R中的每一个有限生成的理想都是乘法,那么一个环R就被称为算术环。如果对于每一个理想B, R中存在一个理想C,使得B = CA,则R中的理想A为乘法,[2]。请注意,C规模规模[B: A],故B = CA规模规模[B: A]A规模规模;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A remark on arithmetical rings
ΦA,B := {I | I is non-zero finitely generated, A ⊆ I, I + B = R} . He showed, [3, Theorem 5], that M is the smallest element in ΦA,B if and only if the following conditions are satisfied: ( i) A ⊆ M , ( ii) M + B = R and ( iii) if S is a non-zero a finitely generated ideal in R such that AM−1 ⊆ S and S + B = R, then R = S. He also proved, [3, Corollary to Theorem 4], that the smallest element always exists if R is a Dedekind domain. In this short note we generalize these two results to arithmetical rings. Recall that a ring R is called an arithmetical ring if every finitely generated ideal in R is multiplication. An ideal A in R is multiplication if for every ideal B ⊆ A, there exists an ideal C in R such that B = CA, [2]. Note that C ⊆ [B : A], and hence B = CA ⊆ [B : A]A ⊆ B,
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
66
审稿时长
6-12 weeks
期刊介绍: The International Journal of Algebra and Computation publishes high quality original research papers in combinatorial, algorithmic and computational aspects of algebra (including combinatorial and geometric group theory and semigroup theory, algorithmic aspects of universal algebra, computational and algorithmic commutative algebra, probabilistic models related to algebraic structures, random algebraic structures), and gives a preference to papers in the areas of mathematics represented by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信