O. V. Nechvoglod, S. Sergeeva, K. Pikulin, E. Selivanov
{"title":"粒状铜镍锍的电解","authors":"O. V. Nechvoglod, S. Sergeeva, K. Pikulin, E. Selivanov","doi":"10.17073/0021-3438-2018-5-16-22","DOIUrl":null,"url":null,"abstract":"The paper justifies the method of processing sulfide-metal melts including their granulation and subsequent electrolysis of granules. High-speed crystallization ensures ultrafine structure formation and stabilizes non-stoichiometric high-temperature phases leading to an increase in the reactivity of granules during subsequent hydrometallurgical processing. Copper powder was isolated at the cathode, and sulfur-sulfide slime (NiS–Сu9S5–Cu7S4–S) was isolated at the anode in a sulfuric acid solution during the electrolysis of granular copper-nickel matte (Cu : Ni = 1 : 1). The influence of current density and process duration on electrolysis parameters and the quality of copper powder isolated was estimated. Sulfur sulfide slime (containing more than 50 % sulfur) forms a passivation layer on granule surfaces, which prevents reagent feeding and reaction product removal from the interaction zone. Anodic current density of up to 100 A/m2 ensures metal conversion into a solution and copper powder (PMS-1 grade) formation at the cathode. Powder is represented by 1 to 100 μm particles of dendritic and fragmented shapes. High-quality copper powder isolation was achieved when saturating electrolyte with nickel to 28,0 g/dm3 . In this case, anode efficiency was 37 % with respect to sulfur, and cathode efficiency was 92,8 % for copper. The process is recommended for copper and nickel separation when processing sulfide-metal alloys. Copper content of in the solution during electrolysis ranged from 0,4 to 2,0 g/dm3.","PeriodicalId":14523,"journal":{"name":"Izvestiya Vuzov Tsvetnaya Metallurgiya (Proceedings of Higher Schools Nonferrous Metallurgy","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ELECTROLYSIS OF GRANULATED COPPER-NICKEL MATTE\",\"authors\":\"O. V. Nechvoglod, S. Sergeeva, K. Pikulin, E. Selivanov\",\"doi\":\"10.17073/0021-3438-2018-5-16-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper justifies the method of processing sulfide-metal melts including their granulation and subsequent electrolysis of granules. High-speed crystallization ensures ultrafine structure formation and stabilizes non-stoichiometric high-temperature phases leading to an increase in the reactivity of granules during subsequent hydrometallurgical processing. Copper powder was isolated at the cathode, and sulfur-sulfide slime (NiS–Сu9S5–Cu7S4–S) was isolated at the anode in a sulfuric acid solution during the electrolysis of granular copper-nickel matte (Cu : Ni = 1 : 1). The influence of current density and process duration on electrolysis parameters and the quality of copper powder isolated was estimated. Sulfur sulfide slime (containing more than 50 % sulfur) forms a passivation layer on granule surfaces, which prevents reagent feeding and reaction product removal from the interaction zone. Anodic current density of up to 100 A/m2 ensures metal conversion into a solution and copper powder (PMS-1 grade) formation at the cathode. Powder is represented by 1 to 100 μm particles of dendritic and fragmented shapes. High-quality copper powder isolation was achieved when saturating electrolyte with nickel to 28,0 g/dm3 . In this case, anode efficiency was 37 % with respect to sulfur, and cathode efficiency was 92,8 % for copper. The process is recommended for copper and nickel separation when processing sulfide-metal alloys. Copper content of in the solution during electrolysis ranged from 0,4 to 2,0 g/dm3.\",\"PeriodicalId\":14523,\"journal\":{\"name\":\"Izvestiya Vuzov Tsvetnaya Metallurgiya (Proceedings of Higher Schools Nonferrous Metallurgy\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Vuzov Tsvetnaya Metallurgiya (Proceedings of Higher Schools Nonferrous Metallurgy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17073/0021-3438-2018-5-16-22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vuzov Tsvetnaya Metallurgiya (Proceedings of Higher Schools Nonferrous Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17073/0021-3438-2018-5-16-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The paper justifies the method of processing sulfide-metal melts including their granulation and subsequent electrolysis of granules. High-speed crystallization ensures ultrafine structure formation and stabilizes non-stoichiometric high-temperature phases leading to an increase in the reactivity of granules during subsequent hydrometallurgical processing. Copper powder was isolated at the cathode, and sulfur-sulfide slime (NiS–Сu9S5–Cu7S4–S) was isolated at the anode in a sulfuric acid solution during the electrolysis of granular copper-nickel matte (Cu : Ni = 1 : 1). The influence of current density and process duration on electrolysis parameters and the quality of copper powder isolated was estimated. Sulfur sulfide slime (containing more than 50 % sulfur) forms a passivation layer on granule surfaces, which prevents reagent feeding and reaction product removal from the interaction zone. Anodic current density of up to 100 A/m2 ensures metal conversion into a solution and copper powder (PMS-1 grade) formation at the cathode. Powder is represented by 1 to 100 μm particles of dendritic and fragmented shapes. High-quality copper powder isolation was achieved when saturating electrolyte with nickel to 28,0 g/dm3 . In this case, anode efficiency was 37 % with respect to sulfur, and cathode efficiency was 92,8 % for copper. The process is recommended for copper and nickel separation when processing sulfide-metal alloys. Copper content of in the solution during electrolysis ranged from 0,4 to 2,0 g/dm3.