{"title":"第一Drinfeld覆盖中的Picard顶点仿射群","authors":"J. Taylor","doi":"10.1017/S0305004123000221","DOIUrl":null,"url":null,"abstract":"Abstract Let F be a finite extension of \n${\\mathbb Q}_p$\n . Let \n$\\Omega$\n be the Drinfeld upper half plane, and \n$\\Sigma^1$\n the first Drinfeld covering of \n$\\Omega$\n . We study the affinoid open subset \n$\\Sigma^1_v$\n of \n$\\Sigma^1$\n above a vertex of the Bruhat–Tits tree for \n$\\text{GL}_2(F)$\n . Our main result is that \n$\\text{Pic}\\!\\left(\\Sigma^1_v\\right)[p] = 0$\n , which we establish by showing that \n$\\text{Pic}({\\mathbf Y})[p] = 0$\n for \n${\\mathbf Y}$\n the Deligne–Lusztig variety of \n$\\text{SL}_2\\!\\left({\\mathbb F}_q\\right)$\n . One formal consequence is a description of the representation \n$H^1_{{\\acute{\\text{e}}\\text{t}}}\\!\\left(\\Sigma^1_v, {\\mathbb Z}_p(1)\\right)$\n of \n$\\text{GL}_2(\\mathcal{O}_F)$\n as the p-adic completion of \n$\\mathcal{O}\\!\\left(\\Sigma^1_v\\right)^\\times$\n .","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"112 1","pages":"423 - 432"},"PeriodicalIF":0.6000,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Picard group of vertex affinoids in the first Drinfeld covering\",\"authors\":\"J. Taylor\",\"doi\":\"10.1017/S0305004123000221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let F be a finite extension of \\n${\\\\mathbb Q}_p$\\n . Let \\n$\\\\Omega$\\n be the Drinfeld upper half plane, and \\n$\\\\Sigma^1$\\n the first Drinfeld covering of \\n$\\\\Omega$\\n . We study the affinoid open subset \\n$\\\\Sigma^1_v$\\n of \\n$\\\\Sigma^1$\\n above a vertex of the Bruhat–Tits tree for \\n$\\\\text{GL}_2(F)$\\n . Our main result is that \\n$\\\\text{Pic}\\\\!\\\\left(\\\\Sigma^1_v\\\\right)[p] = 0$\\n , which we establish by showing that \\n$\\\\text{Pic}({\\\\mathbf Y})[p] = 0$\\n for \\n${\\\\mathbf Y}$\\n the Deligne–Lusztig variety of \\n$\\\\text{SL}_2\\\\!\\\\left({\\\\mathbb F}_q\\\\right)$\\n . One formal consequence is a description of the representation \\n$H^1_{{\\\\acute{\\\\text{e}}\\\\text{t}}}\\\\!\\\\left(\\\\Sigma^1_v, {\\\\mathbb Z}_p(1)\\\\right)$\\n of \\n$\\\\text{GL}_2(\\\\mathcal{O}_F)$\\n as the p-adic completion of \\n$\\\\mathcal{O}\\\\!\\\\left(\\\\Sigma^1_v\\\\right)^\\\\times$\\n .\",\"PeriodicalId\":18320,\"journal\":{\"name\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"volume\":\"112 1\",\"pages\":\"423 - 432\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0305004123000221\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0305004123000221","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Picard group of vertex affinoids in the first Drinfeld covering
Abstract Let F be a finite extension of
${\mathbb Q}_p$
. Let
$\Omega$
be the Drinfeld upper half plane, and
$\Sigma^1$
the first Drinfeld covering of
$\Omega$
. We study the affinoid open subset
$\Sigma^1_v$
of
$\Sigma^1$
above a vertex of the Bruhat–Tits tree for
$\text{GL}_2(F)$
. Our main result is that
$\text{Pic}\!\left(\Sigma^1_v\right)[p] = 0$
, which we establish by showing that
$\text{Pic}({\mathbf Y})[p] = 0$
for
${\mathbf Y}$
the Deligne–Lusztig variety of
$\text{SL}_2\!\left({\mathbb F}_q\right)$
. One formal consequence is a description of the representation
$H^1_{{\acute{\text{e}}\text{t}}}\!\left(\Sigma^1_v, {\mathbb Z}_p(1)\right)$
of
$\text{GL}_2(\mathcal{O}_F)$
as the p-adic completion of
$\mathcal{O}\!\left(\Sigma^1_v\right)^\times$
.
期刊介绍:
Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.