{"title":"多力点slek (ρ_)的时间反转,所有力点都在同一侧","authors":"Dapeng Zhan","doi":"10.1214/21-aihp1170","DOIUrl":null,"url":null,"abstract":"We define intermediate SLEκ(ρ) and reversed intermediate SLEκ(ρ) processes using Appell-Lauricella multiple hypergeometric functions, and use them to describe the timereversal of multiple-force-point chordal SLEκ(ρ) curves in the case that all force points are on the boundary and lie on the same side of the initial point, and κ and ρ = (ρ1, . . . , ρm) satisfy that either κ ∈ (0, 4] and kj=1 ρj > −2 for all 1 ≤ k ≤ m, or κ ∈ (4, 8) and ∑k j=1 ρj ≥ κ2 − 2 for all 1 ≤ k ≤ m.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Time-reversal of multiple-force-point SLEκ(ρ_) with all force points lying on the same side\",\"authors\":\"Dapeng Zhan\",\"doi\":\"10.1214/21-aihp1170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define intermediate SLEκ(ρ) and reversed intermediate SLEκ(ρ) processes using Appell-Lauricella multiple hypergeometric functions, and use them to describe the timereversal of multiple-force-point chordal SLEκ(ρ) curves in the case that all force points are on the boundary and lie on the same side of the initial point, and κ and ρ = (ρ1, . . . , ρm) satisfy that either κ ∈ (0, 4] and kj=1 ρj > −2 for all 1 ≤ k ≤ m, or κ ∈ (4, 8) and ∑k j=1 ρj ≥ κ2 − 2 for all 1 ≤ k ≤ m.\",\"PeriodicalId\":42884,\"journal\":{\"name\":\"Annales de l Institut Henri Poincare D\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales de l Institut Henri Poincare D\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/21-aihp1170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-aihp1170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Time-reversal of multiple-force-point SLEκ(ρ_) with all force points lying on the same side
We define intermediate SLEκ(ρ) and reversed intermediate SLEκ(ρ) processes using Appell-Lauricella multiple hypergeometric functions, and use them to describe the timereversal of multiple-force-point chordal SLEκ(ρ) curves in the case that all force points are on the boundary and lie on the same side of the initial point, and κ and ρ = (ρ1, . . . , ρm) satisfy that either κ ∈ (0, 4] and kj=1 ρj > −2 for all 1 ≤ k ≤ m, or κ ∈ (4, 8) and ∑k j=1 ρj ≥ κ2 − 2 for all 1 ≤ k ≤ m.