强反射原理的规范片段

IF 0.9 1区 数学 Q1 LOGIC
G. Fuchs
{"title":"强反射原理的规范片段","authors":"G. Fuchs","doi":"10.1142/S0219061321500239","DOIUrl":null,"url":null,"abstract":"For an arbitrary forcing class [Formula: see text], the [Formula: see text]-fragment of Todorčević’s strong reflection principle SRP is isolated in such a way that (1) the forcing axiom for [Formula: see text] implies the [Formula: see text]-fragment of SRP , (2) the stationary set preserving fragment of SRP is the full principle SRP , and (3) the subcomplete fragment of SRP implies the major consequences of the subcomplete forcing axiom. This fragment of SRP is consistent with CH , and even with Jensen’s principle [Formula: see text]. Along the way, some hitherto unknown effects of (the subcomplete fragment of) SRP on mutual stationarity are explored, and some limitations to the extent to which fragments of SRP may capture the effects of their corresponding forcing axioms are established.","PeriodicalId":50144,"journal":{"name":"Journal of Mathematical Logic","volume":"26 1","pages":"2150023:1-2150023:58"},"PeriodicalIF":0.9000,"publicationDate":"2020-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Canonical fragments of the strong reflection principle\",\"authors\":\"G. Fuchs\",\"doi\":\"10.1142/S0219061321500239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an arbitrary forcing class [Formula: see text], the [Formula: see text]-fragment of Todorčević’s strong reflection principle SRP is isolated in such a way that (1) the forcing axiom for [Formula: see text] implies the [Formula: see text]-fragment of SRP , (2) the stationary set preserving fragment of SRP is the full principle SRP , and (3) the subcomplete fragment of SRP implies the major consequences of the subcomplete forcing axiom. This fragment of SRP is consistent with CH , and even with Jensen’s principle [Formula: see text]. Along the way, some hitherto unknown effects of (the subcomplete fragment of) SRP on mutual stationarity are explored, and some limitations to the extent to which fragments of SRP may capture the effects of their corresponding forcing axioms are established.\",\"PeriodicalId\":50144,\"journal\":{\"name\":\"Journal of Mathematical Logic\",\"volume\":\"26 1\",\"pages\":\"2150023:1-2150023:58\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219061321500239\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S0219061321500239","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 4

摘要

对于任意强迫类[公式:见文],todor evevic强反射原理SRP的[公式:见文]片段以这样的方式被孤立:(1)[公式:见文]的强迫公理暗示[公式:见文]的SRP片段,(2)SRP的平稳集保持片段是完整原则SRP, (3) SRP的次完备片段暗示次完备强迫公理的主要结果。这段SRP与CH,甚至与Jensen原理一致[公式:见文]。在此过程中,探索了SRP(亚完全片段)对相互平稳性的一些迄今未知的影响,并建立了SRP片段可能捕获其相应强迫公理影响的程度的一些限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Canonical fragments of the strong reflection principle
For an arbitrary forcing class [Formula: see text], the [Formula: see text]-fragment of Todorčević’s strong reflection principle SRP is isolated in such a way that (1) the forcing axiom for [Formula: see text] implies the [Formula: see text]-fragment of SRP , (2) the stationary set preserving fragment of SRP is the full principle SRP , and (3) the subcomplete fragment of SRP implies the major consequences of the subcomplete forcing axiom. This fragment of SRP is consistent with CH , and even with Jensen’s principle [Formula: see text]. Along the way, some hitherto unknown effects of (the subcomplete fragment of) SRP on mutual stationarity are explored, and some limitations to the extent to which fragments of SRP may capture the effects of their corresponding forcing axioms are established.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Logic
Journal of Mathematical Logic MATHEMATICS-LOGIC
CiteScore
1.60
自引率
11.10%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Logic (JML) provides an important forum for the communication of original contributions in all areas of mathematical logic and its applications. It aims at publishing papers at the highest level of mathematical creativity and sophistication. JML intends to represent the most important and innovative developments in the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信