滨崎堡的模型研究

Wei Ywin Teo, P. P. Ong
{"title":"滨崎堡的模型研究","authors":"Wei Ywin Teo, P. P. Ong","doi":"10.4043/31468-ms","DOIUrl":null,"url":null,"abstract":"\n Offshore wind farms are venturing into deeper water, where wind is steadier and stronger, to tap on more wind energy. The installation of wind turbines in deeper waters requires the use of a floating wind turbine. Designing the floating platforms is challenging as dynamic effects waves, wind, and currents, have to be considered. Hydrodynamic behaviours can only be modelled accurately in time domain analysis, which requires an immense computational effort, when several load cases are taken into consideration. A more efficient approach is to first conduct stability analysis to identify the modal frequencies, and subsequently carry out time domain analysis using those modal frequencies.\n This paper describes a static study and time domain analysis on an innovative offshore spar turbine with hulls. Ansys Aqwa, a finite-element software, is used to study a model proposed by Mitsubishi Heavy Industries. The key objective is to explore a more cost-effective offshore platform by investigating the relationship between the geometry of hulls and the responses of the platform.","PeriodicalId":11081,"journal":{"name":"Day 2 Wed, March 23, 2022","volume":"99 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Modelling Study of Hamakaze Fowt\",\"authors\":\"Wei Ywin Teo, P. P. Ong\",\"doi\":\"10.4043/31468-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Offshore wind farms are venturing into deeper water, where wind is steadier and stronger, to tap on more wind energy. The installation of wind turbines in deeper waters requires the use of a floating wind turbine. Designing the floating platforms is challenging as dynamic effects waves, wind, and currents, have to be considered. Hydrodynamic behaviours can only be modelled accurately in time domain analysis, which requires an immense computational effort, when several load cases are taken into consideration. A more efficient approach is to first conduct stability analysis to identify the modal frequencies, and subsequently carry out time domain analysis using those modal frequencies.\\n This paper describes a static study and time domain analysis on an innovative offshore spar turbine with hulls. Ansys Aqwa, a finite-element software, is used to study a model proposed by Mitsubishi Heavy Industries. The key objective is to explore a more cost-effective offshore platform by investigating the relationship between the geometry of hulls and the responses of the platform.\",\"PeriodicalId\":11081,\"journal\":{\"name\":\"Day 2 Wed, March 23, 2022\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, March 23, 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4043/31468-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, March 23, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/31468-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

海上风力发电场正在冒险进入更深的水域,那里的风更稳定、更强,以利用更多的风能。在较深的水域安装风力涡轮机需要使用浮动风力涡轮机。设计浮动平台具有挑战性,因为必须考虑海浪、风和水流的动态影响。当考虑多种载荷情况时,水动力行为只能在时域分析中精确建模,这需要大量的计算工作。更有效的方法是首先进行稳定性分析以识别模态频率,然后利用这些模态频率进行时域分析。本文介绍了一种新型海上带壳梁式水轮机的静力学研究和时域分析。利用Ansys aquwa有限元软件对三菱重工提出的模型进行了研究。关键目标是通过研究船体几何形状与平台响应之间的关系,探索更具成本效益的海上平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Modelling Study of Hamakaze Fowt
Offshore wind farms are venturing into deeper water, where wind is steadier and stronger, to tap on more wind energy. The installation of wind turbines in deeper waters requires the use of a floating wind turbine. Designing the floating platforms is challenging as dynamic effects waves, wind, and currents, have to be considered. Hydrodynamic behaviours can only be modelled accurately in time domain analysis, which requires an immense computational effort, when several load cases are taken into consideration. A more efficient approach is to first conduct stability analysis to identify the modal frequencies, and subsequently carry out time domain analysis using those modal frequencies. This paper describes a static study and time domain analysis on an innovative offshore spar turbine with hulls. Ansys Aqwa, a finite-element software, is used to study a model proposed by Mitsubishi Heavy Industries. The key objective is to explore a more cost-effective offshore platform by investigating the relationship between the geometry of hulls and the responses of the platform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信