珠光体球墨铸铁在石墨化退火热处理过程中的渗碳体分解

IF 3.1 2区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING
Min-qiang Gao, Ying-dong Qu, Guang-long Li, Jun-hua You, Rong-de Li
{"title":"珠光体球墨铸铁在石墨化退火热处理过程中的渗碳体分解","authors":"Min-qiang Gao,&nbsp;Ying-dong Qu,&nbsp;Guang-long Li,&nbsp;Jun-hua You,&nbsp;Rong-de Li","doi":"10.1016/S1006-706X(17)30124-3","DOIUrl":null,"url":null,"abstract":"<div><p>Cementites decomposition of a pearlitic ductile cast iron during graphitization annealing heat treatment was investigated. Fractographies and microstructures of heat treated samples were observed using a scanning electron microscope and mechanical properties were measured by a universal tensile test machine. The results indicated that during isothermal annealing at 750 °C, the tensile strength of pearlitic ductile cast iron was increased to a peak value at 0.5 h, and decreased gradually thereafter but the elongation was enhanced with the increase of annealing time. Moreover, the diffusion coefficient of carbon atoms could be approximately calculated as 0.56 µm<sup>2</sup>/s that could be regarded as the shortrange diffusion. As the holding time was short (0. 5 h), diffusion of carbon atoms was incomplete and mainly occurred around the graphites where the morphology of cementites changed from fragmentized shape to granular shape. In addition, the ductile cast iron with tensile strength of 740 MPa and elongation of 7% could be achieved after graphitization annealing heat treatment for 0. 5 h. Two principal factors should be taken into account. First, the decomposition of a small amount of cementites was beneficial for increasing the ductility up to elongation of 7%. Second, the diffusion of carbon atoms from cementites to graphites could improve the binding force between graphites and matrix, enhancing the tensile strength to 740 MPa.</p></div>","PeriodicalId":64470,"journal":{"name":"Journal of Iron and Steel Research(International)","volume":"24 8","pages":"Pages 838-843"},"PeriodicalIF":3.1000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1006-706X(17)30124-3","citationCount":"6","resultStr":"{\"title\":\"Cementites decomposition of a pearlitic ductile cast iron during graphitization annealing heat treatment\",\"authors\":\"Min-qiang Gao,&nbsp;Ying-dong Qu,&nbsp;Guang-long Li,&nbsp;Jun-hua You,&nbsp;Rong-de Li\",\"doi\":\"10.1016/S1006-706X(17)30124-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cementites decomposition of a pearlitic ductile cast iron during graphitization annealing heat treatment was investigated. Fractographies and microstructures of heat treated samples were observed using a scanning electron microscope and mechanical properties were measured by a universal tensile test machine. The results indicated that during isothermal annealing at 750 °C, the tensile strength of pearlitic ductile cast iron was increased to a peak value at 0.5 h, and decreased gradually thereafter but the elongation was enhanced with the increase of annealing time. Moreover, the diffusion coefficient of carbon atoms could be approximately calculated as 0.56 µm<sup>2</sup>/s that could be regarded as the shortrange diffusion. As the holding time was short (0. 5 h), diffusion of carbon atoms was incomplete and mainly occurred around the graphites where the morphology of cementites changed from fragmentized shape to granular shape. In addition, the ductile cast iron with tensile strength of 740 MPa and elongation of 7% could be achieved after graphitization annealing heat treatment for 0. 5 h. Two principal factors should be taken into account. First, the decomposition of a small amount of cementites was beneficial for increasing the ductility up to elongation of 7%. Second, the diffusion of carbon atoms from cementites to graphites could improve the binding force between graphites and matrix, enhancing the tensile strength to 740 MPa.</p></div>\",\"PeriodicalId\":64470,\"journal\":{\"name\":\"Journal of Iron and Steel Research(International)\",\"volume\":\"24 8\",\"pages\":\"Pages 838-843\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1006-706X(17)30124-3\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Iron and Steel Research(International)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1006706X17301243\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Iron and Steel Research(International)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1006706X17301243","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 6

摘要

研究了珠光体球墨铸铁在石墨化退火热处理过程中渗碳体的分解。用扫描电镜观察热处理试样的断口形貌和显微组织,用万能拉伸试验机测定试样的力学性能。结果表明:在750℃等温退火过程中,珠光体球墨铸铁的抗拉强度在0.5 h时达到峰值,此后逐渐下降,但伸长率随退火时间的增加而提高;此外,碳原子的扩散系数可以近似计算为0.56µm2/s,可以认为是短距离扩散。由于保温时间短(0。5 h),碳原子的扩散不完全,主要发生在石墨周围,渗碳体的形态由碎片状变为粒状。另外,经0℃石墨化退火热处理后,可获得抗拉强度为740 MPa、伸长率为7%的球墨铸铁。应该考虑两个主要因素。首先,少量渗碳体的分解有利于提高塑性,伸长率可达7%。其次,碳原子从渗碳体向石墨的扩散可以提高石墨与基体之间的结合力,拉伸强度提高到740 MPa。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cementites decomposition of a pearlitic ductile cast iron during graphitization annealing heat treatment

Cementites decomposition of a pearlitic ductile cast iron during graphitization annealing heat treatment was investigated. Fractographies and microstructures of heat treated samples were observed using a scanning electron microscope and mechanical properties were measured by a universal tensile test machine. The results indicated that during isothermal annealing at 750 °C, the tensile strength of pearlitic ductile cast iron was increased to a peak value at 0.5 h, and decreased gradually thereafter but the elongation was enhanced with the increase of annealing time. Moreover, the diffusion coefficient of carbon atoms could be approximately calculated as 0.56 µm2/s that could be regarded as the shortrange diffusion. As the holding time was short (0. 5 h), diffusion of carbon atoms was incomplete and mainly occurred around the graphites where the morphology of cementites changed from fragmentized shape to granular shape. In addition, the ductile cast iron with tensile strength of 740 MPa and elongation of 7% could be achieved after graphitization annealing heat treatment for 0. 5 h. Two principal factors should be taken into account. First, the decomposition of a small amount of cementites was beneficial for increasing the ductility up to elongation of 7%. Second, the diffusion of carbon atoms from cementites to graphites could improve the binding force between graphites and matrix, enhancing the tensile strength to 740 MPa.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
2879
审稿时长
3.0 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信