2nm节点:用于人工智能和下一代智能移动设备的FinFET与纳米板晶体管架构的基准

S. Song, B. Colombeau, M. Bauer, V. Moroz, X. Lin, P. Asenov, D. Sherlekar, M. Choi, J. Huang, B. Cheng, C. Chidambaram, S. Natarajan
{"title":"2nm节点:用于人工智能和下一代智能移动设备的FinFET与纳米板晶体管架构的基准","authors":"S. Song, B. Colombeau, M. Bauer, V. Moroz, X. Lin, P. Asenov, D. Sherlekar, M. Choi, J. Huang, B. Cheng, C. Chidambaram, S. Natarajan","doi":"10.23919/VLSIT.2019.8776478","DOIUrl":null,"url":null,"abstract":"We explore four different technology and design options for transistors and library cells for a low power supply voltage of 0.4 V and circuit statistics representative of artificial intelligence (AI) applications. The design rules correspond to 2nm node with cell heights of 100~110 nm and 30 nm gate pitch. Holistic analysis of the RO (Ring Oscillator) behavior, including MOL parasitics, all major variability sources, and stress proximity effects suggests that different FinFET and nanoslab transistor design options exhibit a wide range of power and performance differences. The key to improve FinFET PPA is to avoid fin cuts to maintain strong PMOS performance, and a key to improve SS corner delay is to use nanoslabs with tighter variability control.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"136 1","pages":"T206-T207"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"2nm Node: Benchmarking FinFET vs Nano-Slab Transistor Architectures for Artificial Intelligence and Next Gen Smart Mobile Devices\",\"authors\":\"S. Song, B. Colombeau, M. Bauer, V. Moroz, X. Lin, P. Asenov, D. Sherlekar, M. Choi, J. Huang, B. Cheng, C. Chidambaram, S. Natarajan\",\"doi\":\"10.23919/VLSIT.2019.8776478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore four different technology and design options for transistors and library cells for a low power supply voltage of 0.4 V and circuit statistics representative of artificial intelligence (AI) applications. The design rules correspond to 2nm node with cell heights of 100~110 nm and 30 nm gate pitch. Holistic analysis of the RO (Ring Oscillator) behavior, including MOL parasitics, all major variability sources, and stress proximity effects suggests that different FinFET and nanoslab transistor design options exhibit a wide range of power and performance differences. The key to improve FinFET PPA is to avoid fin cuts to maintain strong PMOS performance, and a key to improve SS corner delay is to use nanoslabs with tighter variability control.\",\"PeriodicalId\":6752,\"journal\":{\"name\":\"2019 Symposium on VLSI Technology\",\"volume\":\"136 1\",\"pages\":\"T206-T207\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/VLSIT.2019.8776478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIT.2019.8776478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们探索了四种不同的技术和设计方案,用于0.4 V的低电源电压的晶体管和库单元,以及代表人工智能(AI)应用的电路统计。设计规则对应于2nm节点,单元高度为100~110 nm,栅极间距为30 nm。对环形振荡器(RO)行为的整体分析,包括MOL寄生、所有主要变异性源和应力接近效应,表明不同的FinFET和纳米板晶体管设计选项显示出广泛的功率和性能差异。改善FinFET PPA的关键是避免翅片切割以保持较强的PMOS性能,改善SS角延迟的关键是使用具有更严格可变性控制的纳米板。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
2nm Node: Benchmarking FinFET vs Nano-Slab Transistor Architectures for Artificial Intelligence and Next Gen Smart Mobile Devices
We explore four different technology and design options for transistors and library cells for a low power supply voltage of 0.4 V and circuit statistics representative of artificial intelligence (AI) applications. The design rules correspond to 2nm node with cell heights of 100~110 nm and 30 nm gate pitch. Holistic analysis of the RO (Ring Oscillator) behavior, including MOL parasitics, all major variability sources, and stress proximity effects suggests that different FinFET and nanoslab transistor design options exhibit a wide range of power and performance differences. The key to improve FinFET PPA is to avoid fin cuts to maintain strong PMOS performance, and a key to improve SS corner delay is to use nanoslabs with tighter variability control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信