一种集成互信息的改进社区划分算法

Y. Li, Ying Sha, Jixi Shan, Bo Jiang, Jianjun Wu
{"title":"一种集成互信息的改进社区划分算法","authors":"Y. Li, Ying Sha, Jixi Shan, Bo Jiang, Jianjun Wu","doi":"10.4304/jnw.9.9.2289-2298","DOIUrl":null,"url":null,"abstract":"The research of community detection can help us analyze kinds of problems in social network, in which the research of community structure is very important. This paper proposes an improved algorithm: An Improved BGLL Integrating Mutual Information (BGLLi), which stabilizes modularity, meanwhile fuses the index of mutual information, so that we can find the optimal threshold of modularity and reduce the running time of community partition effectively. The dataset adopts the Twitter dataset and the public Arxiv dataset, and the related experimental results have verified the effectiveness of the algorithm","PeriodicalId":14643,"journal":{"name":"J. Networks","volume":"48 1","pages":"2289-2298"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Improved Community Partition Algorithm Integrating Mutual Information\",\"authors\":\"Y. Li, Ying Sha, Jixi Shan, Bo Jiang, Jianjun Wu\",\"doi\":\"10.4304/jnw.9.9.2289-2298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The research of community detection can help us analyze kinds of problems in social network, in which the research of community structure is very important. This paper proposes an improved algorithm: An Improved BGLL Integrating Mutual Information (BGLLi), which stabilizes modularity, meanwhile fuses the index of mutual information, so that we can find the optimal threshold of modularity and reduce the running time of community partition effectively. The dataset adopts the Twitter dataset and the public Arxiv dataset, and the related experimental results have verified the effectiveness of the algorithm\",\"PeriodicalId\":14643,\"journal\":{\"name\":\"J. Networks\",\"volume\":\"48 1\",\"pages\":\"2289-2298\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4304/jnw.9.9.2289-2298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4304/jnw.9.9.2289-2298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

社区检测的研究可以帮助我们分析社会网络中的各种问题,其中社区结构的研究是非常重要的。本文提出了一种改进算法:改进的互信息集成BGLLi (improved BGLL integrated Mutual Information, BGLLi),该算法在稳定模块化的同时融合互信息指标,从而找到模块化的最优阈值,有效地减少了社区划分的运行时间。数据集采用Twitter数据集和公开的Arxiv数据集,相关实验结果验证了算法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Community Partition Algorithm Integrating Mutual Information
The research of community detection can help us analyze kinds of problems in social network, in which the research of community structure is very important. This paper proposes an improved algorithm: An Improved BGLL Integrating Mutual Information (BGLLi), which stabilizes modularity, meanwhile fuses the index of mutual information, so that we can find the optimal threshold of modularity and reduce the running time of community partition effectively. The dataset adopts the Twitter dataset and the public Arxiv dataset, and the related experimental results have verified the effectiveness of the algorithm
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信