涵洞入口堆积物对下游冲刷影响的试验研究

Q3 Engineering
S. Karimpour, S. Gohari
{"title":"涵洞入口堆积物对下游冲刷影响的试验研究","authors":"S. Karimpour, S. Gohari","doi":"10.22075/JRCE.2020.18210.1348","DOIUrl":null,"url":null,"abstract":"The major damage of hydraulic structures at river crossing occurs during floods and culverts is the structure which use as a part of drainage system in ephemeral streams. Failure in structures is caused for different reasons but pier and abutment scour is the main reason. The presence of debris causes larger scours and sediment removal compared to the absence of debris accumulation. In this study, the common problem of the flow blockage at culvert inlets is investigated applying a hydraulic model set in laboratory. Experiments were performed to understand the changes and interaction of scour depth over a range of downstream flow depths, ht and densimetric Froude number, Fo. The debris accumulation is modelled by rectangular plates of constant width (30 cm) and various heights (4, 8, 12, 16 cm) set at the culvert entrance. When culvert inlet area decreased by the smallest solid debris accumulation - which covered 20% of inlet area-, the upstream water level raised up to 12% and by the biggest solid debris size- which covered 80% of inlet area- water level increased up to 60%. Debris accumulation causes larger scours and sediment removal, so the scour hole area extended extremely in flow direction. A new maximum scour depth predictor equation has been proposed to predict the effects of debris accumulation at culvert inlet on downstream scour. This equation is well fitted with the experimental results of the current study and the results of experiments from the previous studies used to analyze presented formula.","PeriodicalId":52415,"journal":{"name":"Journal of Rehabilitation in Civil Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An Experimental Study on the Effects of Debris Accumulation at the Culvert Inlet on Downstream Scour\",\"authors\":\"S. Karimpour, S. Gohari\",\"doi\":\"10.22075/JRCE.2020.18210.1348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The major damage of hydraulic structures at river crossing occurs during floods and culverts is the structure which use as a part of drainage system in ephemeral streams. Failure in structures is caused for different reasons but pier and abutment scour is the main reason. The presence of debris causes larger scours and sediment removal compared to the absence of debris accumulation. In this study, the common problem of the flow blockage at culvert inlets is investigated applying a hydraulic model set in laboratory. Experiments were performed to understand the changes and interaction of scour depth over a range of downstream flow depths, ht and densimetric Froude number, Fo. The debris accumulation is modelled by rectangular plates of constant width (30 cm) and various heights (4, 8, 12, 16 cm) set at the culvert entrance. When culvert inlet area decreased by the smallest solid debris accumulation - which covered 20% of inlet area-, the upstream water level raised up to 12% and by the biggest solid debris size- which covered 80% of inlet area- water level increased up to 60%. Debris accumulation causes larger scours and sediment removal, so the scour hole area extended extremely in flow direction. A new maximum scour depth predictor equation has been proposed to predict the effects of debris accumulation at culvert inlet on downstream scour. This equation is well fitted with the experimental results of the current study and the results of experiments from the previous studies used to analyze presented formula.\",\"PeriodicalId\":52415,\"journal\":{\"name\":\"Journal of Rehabilitation in Civil Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rehabilitation in Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22075/JRCE.2020.18210.1348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rehabilitation in Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22075/JRCE.2020.18210.1348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 4

摘要

洪涝灾害对渡口水工构筑物的破坏最为严重,而涵洞是短暂河流中作为排水系统一部分的构筑物。造成结构破坏的原因多种多样,但桥台冲刷是主要原因。与没有碎片堆积相比,碎片的存在造成了更大的冲刷和沉积物的清除。本文应用室内建立的水工模型,对涵洞入口水流堵塞的常见问题进行了研究。通过实验了解了冲刷深度在一定范围内的变化和相互作用,包括下游水流深度、ht和密度弗劳德数Fo。通过在涵洞入口处设置等宽(30厘米)和不同高度(4、8、12、16厘米)的矩形板来模拟碎片堆积。当涵洞进口面积减小时,上游水位上升12%,当涵洞进口面积减小时,上游水位上升60%,当涵洞进口面积减小时,上游水位上升12%,当涵洞进口面积减小时,上游水位上升12%,当涵洞进口面积减小时,上游水位上升60%。碎屑堆积造成较大的冲刷和移沙,冲刷孔面积在流向上极大扩展。提出了一个新的最大冲刷深度预测方程,用于预测涵洞入口堆积物对下游冲刷的影响。该方程与本研究的实验结果以及分析本公式所用的前人研究的实验结果拟合良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Experimental Study on the Effects of Debris Accumulation at the Culvert Inlet on Downstream Scour
The major damage of hydraulic structures at river crossing occurs during floods and culverts is the structure which use as a part of drainage system in ephemeral streams. Failure in structures is caused for different reasons but pier and abutment scour is the main reason. The presence of debris causes larger scours and sediment removal compared to the absence of debris accumulation. In this study, the common problem of the flow blockage at culvert inlets is investigated applying a hydraulic model set in laboratory. Experiments were performed to understand the changes and interaction of scour depth over a range of downstream flow depths, ht and densimetric Froude number, Fo. The debris accumulation is modelled by rectangular plates of constant width (30 cm) and various heights (4, 8, 12, 16 cm) set at the culvert entrance. When culvert inlet area decreased by the smallest solid debris accumulation - which covered 20% of inlet area-, the upstream water level raised up to 12% and by the biggest solid debris size- which covered 80% of inlet area- water level increased up to 60%. Debris accumulation causes larger scours and sediment removal, so the scour hole area extended extremely in flow direction. A new maximum scour depth predictor equation has been proposed to predict the effects of debris accumulation at culvert inlet on downstream scour. This equation is well fitted with the experimental results of the current study and the results of experiments from the previous studies used to analyze presented formula.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Rehabilitation in Civil Engineering
Journal of Rehabilitation in Civil Engineering Engineering-Building and Construction
CiteScore
1.60
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信