用模糊推理系统对水厂混凝剂加药装置进行建模

O. Bello, Y. Hamam, Karim D Djouani
{"title":"用模糊推理系统对水厂混凝剂加药装置进行建模","authors":"O. Bello, Y. Hamam, Karim D Djouani","doi":"10.3182/20140824-6-ZA-1003.02225","DOIUrl":null,"url":null,"abstract":"Abstract In this study, adaptive neuro-fuzzy inference system (ANFIS) was applied to estimate the parameters of a coagulation chemical dosing unit for water treatment plants. The dosing unit has three input variables (sudfloc 3835, ferric chloride and hydrated lime flow rates) and two output variables (surface charge and pH values). The ANFIS model is compared with multilayer backpropagation network (MBPN) with four different training algorithms for performance evaluation purpose. The results of evaluation tests using the average percentage error (APE), root mean squared error (RMSE), correlation coefficient (R) and average relative variance (ARV) criteria show that ANFIS is the most efficient and reliable estimator when the models were presented with noiseless and noisy input datasets.","PeriodicalId":13260,"journal":{"name":"IFAC Proceedings Volumes","volume":"29 1","pages":"3985-3991"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Modelling of a Coagulation Chemical Dosing Unit for Water Treatment Plants Using Fuzzy Inference System\",\"authors\":\"O. Bello, Y. Hamam, Karim D Djouani\",\"doi\":\"10.3182/20140824-6-ZA-1003.02225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this study, adaptive neuro-fuzzy inference system (ANFIS) was applied to estimate the parameters of a coagulation chemical dosing unit for water treatment plants. The dosing unit has three input variables (sudfloc 3835, ferric chloride and hydrated lime flow rates) and two output variables (surface charge and pH values). The ANFIS model is compared with multilayer backpropagation network (MBPN) with four different training algorithms for performance evaluation purpose. The results of evaluation tests using the average percentage error (APE), root mean squared error (RMSE), correlation coefficient (R) and average relative variance (ARV) criteria show that ANFIS is the most efficient and reliable estimator when the models were presented with noiseless and noisy input datasets.\",\"PeriodicalId\":13260,\"journal\":{\"name\":\"IFAC Proceedings Volumes\",\"volume\":\"29 1\",\"pages\":\"3985-3991\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC Proceedings Volumes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3182/20140824-6-ZA-1003.02225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Proceedings Volumes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3182/20140824-6-ZA-1003.02225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

摘要采用自适应神经模糊推理系统(ANFIS)对水厂混凝剂投加单元进行参数估计。计量单元有三个输入变量(悬浮剂3835,氯化铁和水合石灰流速)和两个输出变量(表面电荷和pH值)。将采用四种不同训练算法的ANFIS模型与多层反向传播网络(MBPN)进行了性能评估。使用平均百分比误差(APE)、均方根误差(RMSE)、相关系数(R)和平均相对方差(ARV)标准进行评估测试的结果表明,当模型在无噪声和有噪声的输入数据集上呈现时,ANFIS是最有效和可靠的估计器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling of a Coagulation Chemical Dosing Unit for Water Treatment Plants Using Fuzzy Inference System
Abstract In this study, adaptive neuro-fuzzy inference system (ANFIS) was applied to estimate the parameters of a coagulation chemical dosing unit for water treatment plants. The dosing unit has three input variables (sudfloc 3835, ferric chloride and hydrated lime flow rates) and two output variables (surface charge and pH values). The ANFIS model is compared with multilayer backpropagation network (MBPN) with four different training algorithms for performance evaluation purpose. The results of evaluation tests using the average percentage error (APE), root mean squared error (RMSE), correlation coefficient (R) and average relative variance (ARV) criteria show that ANFIS is the most efficient and reliable estimator when the models were presented with noiseless and noisy input datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信